Descripción del proyecto
Aprendizaje profundo y radiología oncológica para predecir la respuesta a la inmunoterapia
El aprendizaje profundo forma parte de una gama más amplia de métodos de aprendizaje automático basados en la inteligencia artificial. Gracias a esta tecnología, en la radiología para el tratamiento del cáncer es posible lograr una caracterización no invasiva del fenotipo radiómico de todo el tumor. Aunque se han establecido asociaciones de prueba de principio entre los datos radiómicos y la respuesta al tratamiento, es necesario investigar más a fondo el valor clínico de los datos radiómicos. El proyecto financiado con fondos europeos CANCER-RADIOMICS analizará datos clínicos multicéntricos, lo que incluye imagenología no invasiva, resultados clínicos y una amplia caracterización biológica de pacientes con cáncer de pulmón o con melanoma. El objetivo del proyecto es desarrollar biomarcadores radiómicos de aprendizaje profundo para predecir la respuesta al tratamiento con base en el análisis de la imagenología. Los investigadores también estudiarán si la radiómica puede mejorar la predicción de la respuesta y ser de ayuda en la elección de pacientes para las terapias contra el cáncer.
Objetivo
Artificial Intelligence (AI), deep-learning in particular, is propelling the field of radiology forward at a rapid pace. In oncology, AI can characterize the radiomic phenotype of the entire tumor and provide a non-invasive window into the internal growth patterns of a cancer lesion. This is especially important for patients treated with immunotherapy as, despite the remarkable success of these novel therapies, the clinical benefit remains limited to a subset. As immunotherapy is expensive and could bring unnecessary toxicity there is a direct need to identify beneficial patients, but this remains difficult in clinical practice today. Radiomic biomarkers could address this, as, unlike biopsies that only represent a sample within the tumor, radiomics can depict a full picture of each cancer lesion with a single non-invasive examination. Previous work found significant connections between radiomic data, molecular pathways, and clinical outcomes. However, a direct link between radiomics and immunotherapy response has not yet been established. This project will address this problem by analyzing unique multicentre clinical data, including non-invasive imaging, clinical outcomes, and extensive biologic characterization of patients with lung or melanoma cancer. Specifically, I will develop deep-learning radiomic biomarkers to predict immunotherapy response using baseline (WP1) and follow-up imaging (WP2). I will also investigate if radiomics can characterize underlying biological factors, and, in turn, can be used to improve response predictions (WP3). Successful completion of this proposal will demonstrate the potential of radiomics to help physicians in selecting patients who will likely benefit from immunotherapy, while sparing this expensive and potentially toxic treatment for patients who don't. This work has implications for the use of imaging-based biomarkers in the clinic, as they can be applied noninvasively, repeatedly, and at low additional cost.
Ámbito científico (EuroSciVoc)
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..
- ciencias médicas y de la salud medicina clínica oncología melanoma melanoma
- ciencias médicas y de la salud medicina clínica radiología
- ciencias médicas y de la salud medicina básica inmunología inmunoterapia
Para utilizar esta función, debe iniciar sesión o registrarse
Le pedimos disculpas, pero se ha producido un error inesperado durante la ejecución.
Necesita estar autentificado. Puede que su sesión haya finalizado.
Gracias por su comentario. En breve recibirá un correo electrónico para confirmar el envío. Si ha seleccionado que se le notifique sobre el estado del informe, también se le contactará cuando el estado del informe cambie.
Programa(s)
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
PROGRAMA PRINCIPAL
Ver todos los proyectos financiados en el marco de este programa
Tema(s)
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Régimen de financiación
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
ERC-COG - Consolidator Grant
Ver todos los proyectos financiados en el marco de este régimen de financiación
Convocatoria de propuestas
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
(se abrirá en una nueva ventana) ERC-2019-COG
Ver todos los proyectos financiados en el marco de esta convocatoriaInstitución de acogida
Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.
6200 MD Maastricht
Países Bajos
Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.