Skip to main content
European Commission logo
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

Energy- and Size-efficient Ultra-fast Plasmonic Circuits for Neuromorphic Computing Architectures

Descrizione del progetto

Il potenziale della plasmonica per un’informatica neuromorfica a maggiore efficienza energetica

L’informatica neuromorfica, che comprende dispositivi in grado di imitare le strutture biologiche naturali del sistema nervoso umano, presenta un’alternativa promettente ad alta efficienza energetica rispetto alle architetture informatiche convenzionali. Il progetto PlasmoniAC, finanziato dall’UE, investirà in materiali e tecnologie di prim’ordine basati sulla plasmonica, per ottimizzare ulteriormente la potenza computazionale, le dimensioni e l’energia di chip neuromorfici. In caso di successo, il progetto dimostrerà una potente suite di neuroni artificiali plasmonici, che potrebbe vantare di un’efficienza computazionale superiore di fino a tre ordini di grandezza per neurone e un consumo energetico inferiore di fino a sei ordini di grandezza, rispetto alle macchine neuromorfiche più avanzate.

Obiettivo

PlasmoniAC invests in neuromorphic computing towards sustaining processing power and energy efficiency scaling, adopting the best-in-class material and technology platforms for optimizing computational power, size and energy at every of its constituent functions. It employs the proven high-bandwidth and low-loss credentials of photonic interconnects together with the nm-size memory function of memristor nanoelectronics, bridging them by introducing plasmonics as the ideal technology for offering photonic-level bandwidths and electronic-level footprint computations within ultra-low energy consumption envelopes. Following a holistic hardware/software co-design approach, PlasmoniAC targets the following objectives: i) to elevate plasmonics into a computationally-credible platform with Nx100Gb/s bandwidth, um2-scale size and >1014 MAC/s/W computational energy efficiency, using CMOS compatible BTO and SiOC materials for electro- and thermo-optic computational functions, ii) to blend them via a powerful 3D co-integration platform with SixNy-based photonic interconnects and with non-volatile memristor-based weight control, iii) to fabricate two different sets of 100Gb/s 16- and 8-fan-in linear plasmonic neurons, iv) to deploy a whole new class of plasmo-electronic and nanophotonic activation modules, v) to demonstrate a full-set of sin2(x), ReLU, sigmoid and tanh plasmonic neurons for feed-forward and recurrent neurons, v) to embrace them into a properly adapted Deep Learning training model suite, ultimately delivering a neuromorphic plasmonic software design library, and vi) to apply them on IT security-oriented applications for threat and malware detection. Succeeding in its targets will release a powerful artificial plasmonic neuron suite with up to 3 orders of magnitude higher computational efficiencies per neuron and 1 and 6 orders of magnitude higher energy and footprint efficiencies, respectively, compared to the top state-of-the-art neuromorphic machines.

Invito a presentare proposte

H2020-ICT-2018-20

Vedi altri progetti per questo bando

Bando secondario

H2020-ICT-2019-2

Meccanismo di finanziamento

RIA - Research and Innovation action

Coordinatore

ARISTOTELIO PANEPISTIMIO THESSALONIKIS
Contribution nette de l'UE
€ 666 875,00
Indirizzo
KEDEA BUILDING, TRITIS SEPTEMVRIOU, ARISTOTLE UNIVERSITY CAMPUS
546 36 THESSALONIKI
Grecia

Mostra sulla mappa

Regione
Βόρεια Ελλάδα Κεντρική Μακεδονία Θεσσαλονίκη
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale
€ 666 875,00

Partecipanti (11)