European Commission logo
English English
CORDIS - EU research results
CORDIS

SMART BONE REGENERATION

Project description

3D-printed scaffolds for bone regeneration

Bone reconstruction represents a significant healthcare challenge with autografts not suitable for large bone defects and allografts complicated by immunorejection. The EU-funded SBR project develops a smart implant approach for controllable and fast restoration. The proposed solution involves creation of 3D-printed medical-grade polymer scaffolds with embedded stem cells and bioactive factors customised for patient pathology and physiology. In addition, the scaffold design will enable addition of different sensors for monitoring implant performance based on biocompatible conductive 3D printing inks. Finally, the project will test in vivo proof of concept in studies with large animal models and also elaborate the regulatory and commercialisation strategy for future clinical testing.

Objective

The management and reconstruction of bone defects is a significant global healthcare challenge. While autografts offer ideal compatibility, they are often not suitable for large bone defects, and allografts suffer from potential immunorejection.The limited efficacy of conventional treatment strategies for large bone defects and the increasing aged population, has inspired the consortium to propose a SMART RESORBABLE BONE (SRB) IMPLANT embedding stem cells and bioactive agents with the aim of a controllable and fast restoration. The proposed solution includes 3D printed medical grade polymers enriched with electrospun fibers (for increased mechanical properties) that can be customized for patient physiology, pathology, and gender. The scaffold design will ensure easy and minimal Injury placement, and will embed different sensors for monitoring e.g. pressure, pH value and temperature based on biocompatible conductive inks. The smart implant will thus be able to provide vital information of implant performance in terms of bone growth and infection/inflammation. The proposed method is unique because it includes a customized smart implant (3D printed parts with adjustable sensors and communication electronic system), together with tissue engineering methods i.e. in-vitro programming of stem cells for embedding into the smart implant. The proposed solution introduces an innovative regenerative chain, from early testing and characterization (identification/adjustement of the proper specifications) and embedding regenerative stem cells and particulate bioactive agents into the smart implant in preclinical research (in-vitro). The in vivo proof of concept of SBR solution will be tested in (large animal model) preclinical studies within the scope of the project. Finally the regulatory and commercialization strategy on how to further explore the proposed concept and deliver it for clinical testing will be elaborated.

Call for proposal

H2020-SC1-BHC-2018-2020

See other projects for this call

Sub call

H2020-SC1-2019-Single-Stage-RTD

Coordinator

PANEPISTIMIO PATRON
Net EU contribution
€ 739 740,50
Address
UNIVERSITY CAMPUS RIO PATRAS
265 04 Rio Patras
Greece

See on map

Region
Κεντρική Ελλάδα Δυτική Ελλάδα Αχαΐα
Activity type
Higher or Secondary Education Establishments
Links
Total cost
€ 739 740,50

Participants (10)