European Commission logo
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

Anion Exchange Membrane Electrolysis for Renewable Hydrogen Production on a Wide-Scale

Descrizione del progetto

Produzione di idrogeno a basso costo mediante elettrolisi a membrana a scambio anionico

L’obiettivo generale del progetto ANIONE, finanziato dall’UE, è sviluppare una tecnologia di elettrolisi dell’acqua a membrana a scambio anionico ad alte prestazioni, economica e durevole. Il sistema combinerà i vantaggi sia della membrana a scambio protonico che delle tecnologie alcaline dell’elettrolita liquido, consentendo la produzione scalabile di idrogeno a basso costo da fonti rinnovabili. Le membrane polimeriche, che comprendono una catena dorsale e una catena pendente perfluorurata, raggiungeranno una conducibilità e una stabilità paragonabili alle loro controparti protoniche, mentre nuovi rinforzi in nanofibra garantiranno stabilità meccanica e un ridotto passaggio dei gas. Il progetto convaliderà infine un elettrolizzatore a membrana a scambio anionico da 2 kilowatt, producendo idrogeno a una velocità di circa 0,4 Nm3/h. L’idrogeno verde prodotto da fonti rinnovabili è uno dei pilastri per ottenere zero emissioni nette di CO2 nell’UE entro il 2050.

Obiettivo

The overall objective of the ANIONE project is to develop a high-performance, cost-effective and durable anion exchange membrane water electrolysis technology. The approach regards the use of an anion exchange membrane (AEM) and ionomer dispersion in the catalytic layers for hydroxide ion conduction in a system operating mainly with pure water. This system combines the advantages of both proton exchange membrane and liquid electrolyte alkaline technologies allowing the scalable production of low-cost hydrogen from renewable sources. The focus is on developing advanced short side chain Aquivion-based anion exchange polymer membranes comprising a perfluorinated backbone and pendant chains, covalently bonded to the perfluorinated backbone, with quaternary ammonium groups to achieve conductivity and stability comparable to their protonic analogous, and novel nanofibre reinforcements for mechanical stability and reduced gas crossover. Hydrocarbon AEM membranes consisting of either poly(arylene) or poly(olefin) backbone with quaternary ammonium hydroxide groups carried on tethers anchored on the polymeric backbone are developed in parallel. The project aims to validate a 2 kW AEM electrolyser with a hydrogen production rate of about 0.4 Nm3/h (TRL 4). The aim is to contribute to the road-map addressing the achievement of a wide scale decentralised hydrogen production infrastructure with the long-term goal to reach net zero CO2 emissions in EU by 2050. To reach such objectives, innovative reinforced anion exchange membranes will be developed in conjunction with non-critical raw materials (CRMs) high surface area electro-catalysts and membrane-electrode assemblies. Cost-effective stack hardware materials and novel stack designs will contribute to decrease the capital costs of these systems. After appropriate screening of active materials, in terms of performance and stability, in single cells, these components will be validated in an AEM electrolysis stack operating with high differential pressure and assessed in terms of performance, load range and durability under steady-state and dynamic operating conditions. The proposed solutions can contribute significantly to reducing the electrolyser CAPEX and OPEX costs. The project will deliver a techno-economic analysis and an exploitation plan for successive developments with the aim to bring the innovations to market. The consortium comprises an electrolyser manufacturer, membrane, catalysts and MEAs suppliers.

Meccanismo di finanziamento

RIA - Research and Innovation action

Coordinatore

CONSIGLIO NAZIONALE DELLE RICERCHE
Contribution nette de l'UE
€ 365 297,50
Indirizzo
PIAZZALE ALDO MORO 7
00185 Roma
Italia

Mostra sulla mappa

Regione
Centro (IT) Lazio Roma
Tipo di attività
Research Organisations
Collegamenti
Costo totale
€ 365 297,50

Partecipanti (7)