Project description
Reinforcement learning takes a great leap forward
Learning from interaction is a fundamental idea underlying nearly all theories of learning and intelligence. Compared with other approaches to machine learning, reinforcement learning is much more focussed on computational issues that arise when software agents learn from interactions with an environment. The EU-funded COLT-MDP project aims to advance state-of-the-art theoretical approaches to reinforcement learning. The study will revolve around three pillars. The design of compact representation models will enable researchers to better structure complex problems. This could extend the applicability of reinforcement learning to many fields. Furthermore, researchers will develop efficient computation algorithms. Driven by public concerns, a growing body of research will address questions related to fairness and privacy in artificial intelligence.
Objective
Computational learning theory has been highly successful over the last three decades, both in providing deep mathematical theories and in influencing the practice of machine learning. One of the great recent successes of computational learning theory has been the study of online learning and multi-arm bandits. This line of research has been highly successful, both theoretically and practically, addressing many important applications. Unfortunately, the recent theoretical progress in Markov Decision Process and reinforcement learning has been slower.
Based on my fundamental contributions to reinforcement learning (e.g. policy gradient, sparse sampling and trajectory trees), to online learning and machine learning in general, I propose to take the theoretical and practical success of online learning to the next level by making significant breakthroughs in reinforcement learning. Our main aim is to advance the state of the art in the theory of reinforcement learning, and our research will revolve around three pillars: (1) compact representation, (2) efficient computation and (3) societal challenges, including fairness and privacy.
A successful project will greatly impact reinforcement learning in all its stages. Modelling: Introducing new compact representation models, will enhance our understanding how to structure complex problems, which would greatly extend the applicability of reinforcement learning. Efficient computation: New algorithmic methodologies will give new insight for overcoming computational and statistical barriers both for planning and learning. Learning: New learning paradigms would address fundamental issues of copping with uncertainties in complex control environments of reinforcement learning. Societal challenges: Allowing the community to understand, assess, address and overcome societal challenges is of the greatest importance to the acceptance of AI methodologies by the general public.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-ADG - Advanced Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2019-ADG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
69978 Tel Aviv
Israel
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.