Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

Computational Learning Theory: compact representation, efficient computation, and societal challenges in learning MDPs

Descrizione del progetto

L’apprendimento per rinforzo fa un grande salto in avanti

Imparare dall’interazione è un’idea fondamentale alla base di quasi tutte le teorie dell’apprendimento e dell’intelligenza. Rispetto ad altri approcci all’apprendimento automatico, l’apprendimento per rinforzo si concentra molto di più sulle questioni computazionali che sorgono quando gli agenti del software imparano dalle interazioni con un ambiente. Il progetto COLT-MDP, finanziato dall’UE, si propone di far progredire gli approcci teorici più avanzati per rafforzare l’apprendimento. Lo studio ruoterà intorno a tre pilastri. La progettazione di modelli di rappresentazione compatta permetterà ai ricercatori di strutturare meglio problemi complessi. Ciò potrebbe estendere l’applicabilità dell’apprendimento per rinforzo a molti campi. Inoltre, i ricercatori svilupperanno algoritmi di calcolo efficienti. Sotto la spinta delle preoccupazioni dell’opinione pubblica, un crescente corpus di ricerche affronterà le questioni relative all’equità e alla privacy nell’intelligenza artificiale.

Obiettivo

Computational learning theory has been highly successful over the last three decades, both in providing deep mathematical theories and in influencing the practice of machine learning. One of the great recent successes of computational learning theory has been the study of online learning and multi-arm bandits. This line of research has been highly successful, both theoretically and practically, addressing many important applications. Unfortunately, the recent theoretical progress in Markov Decision Process and reinforcement learning has been slower.

Based on my fundamental contributions to reinforcement learning (e.g. policy gradient, sparse sampling and trajectory trees), to online learning and machine learning in general, I propose to take the theoretical and practical success of online learning to the next level by making significant breakthroughs in reinforcement learning. Our main aim is to advance the state of the art in the theory of reinforcement learning, and our research will revolve around three pillars: (1) compact representation, (2) efficient computation and (3) societal challenges, including fairness and privacy.

A successful project will greatly impact reinforcement learning in all its stages. Modelling: Introducing new compact representation models, will enhance our understanding how to structure complex problems, which would greatly extend the applicability of reinforcement learning. Efficient computation: New algorithmic methodologies will give new insight for overcoming computational and statistical barriers both for planning and learning. Learning: New learning paradigms would address fundamental issues of copping with uncertainties in complex control environments of reinforcement learning. Societal challenges: Allowing the community to understand, assess, address and overcome societal challenges is of the greatest importance to the acceptance of AI methodologies by the general public.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Parole chiave

Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).

Programma(i)

Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

ERC-ADG - Advanced Grant

Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

(si apre in una nuova finestra) ERC-2019-ADG

Vedi tutti i progetti finanziati nell’ambito del bando

Istituzione ospitante

TEL AVIV UNIVERSITY
Contributo netto dell'UE

Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.

€ 1 878 125,00
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

€ 1 878 125,00

Beneficiari (1)

Il mio fascicolo 0 0