Skip to main content
Weiter zur Homepage der Europäischen Kommission (öffnet in neuem Fenster)
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS

Computational Learning Theory: compact representation, efficient computation, and societal challenges in learning MDPs

Projektbeschreibung

Ein großer Satz nach vorn für das Verstärkungslernen

Aus Interaktionen zu lernen, ist ein Grundgedanke, der fast allen Theorien des Lernens und der Intelligenz zugrunde liegt. Im Vergleich zu anderen Ansätzen des maschinellen Lernens konzentriert sich das Verstärkungslernen viel stärker auf Rechenprobleme, die auftreten, wenn Software-Agenten aus Interaktionen mit einer Umgebung lernen. Ziel des EU-finanzierten Projekts COLT-MDP ist es, modernste theoretische Ansätze des Verstärkungslernens voranzutreiben. Die Studie wird auf drei Grundpfeilern aufbauen. Der Entwurf kompakter Darstellungsmodelle wird es den Forschenden dabei ermöglichen, komplexe Probleme besser zu strukturieren. Dadurch könnte die Anwendbarkeit des Verstärkungslernens auf viele Bereiche erweitert werden. Darüber hinaus werden die Forschenden effiziente Rechenalgorithmen entwickeln. Angetrieben von den Bedenken der Öffentlichkeit, wird sich künftig eine wachsende Zahl von Forschenden mit Fragen im Zusammenhang mit Gerechtigkeit und Datenschutz in der künstlichen Intelligenz befassen.

Ziel

Computational learning theory has been highly successful over the last three decades, both in providing deep mathematical theories and in influencing the practice of machine learning. One of the great recent successes of computational learning theory has been the study of online learning and multi-arm bandits. This line of research has been highly successful, both theoretically and practically, addressing many important applications. Unfortunately, the recent theoretical progress in Markov Decision Process and reinforcement learning has been slower.

Based on my fundamental contributions to reinforcement learning (e.g. policy gradient, sparse sampling and trajectory trees), to online learning and machine learning in general, I propose to take the theoretical and practical success of online learning to the next level by making significant breakthroughs in reinforcement learning. Our main aim is to advance the state of the art in the theory of reinforcement learning, and our research will revolve around three pillars: (1) compact representation, (2) efficient computation and (3) societal challenges, including fairness and privacy.

A successful project will greatly impact reinforcement learning in all its stages. Modelling: Introducing new compact representation models, will enhance our understanding how to structure complex problems, which would greatly extend the applicability of reinforcement learning. Efficient computation: New algorithmic methodologies will give new insight for overcoming computational and statistical barriers both for planning and learning. Learning: New learning paradigms would address fundamental issues of copping with uncertainties in complex control environments of reinforcement learning. Societal challenges: Allowing the community to understand, assess, address and overcome societal challenges is of the greatest importance to the acceptance of AI methodologies by the general public.

Wissenschaftliches Gebiet (EuroSciVoc)

CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.

Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen

Schlüsselbegriffe

Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).

Programm/Programme

Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.

Thema/Themen

Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.

Finanzierungsplan

Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.

ERC-ADG - Advanced Grant

Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen

Aufforderung zur Vorschlagseinreichung

Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.

(öffnet in neuem Fenster) ERC-2019-ADG

Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigen

Gastgebende Einrichtung

TEL AVIV UNIVERSITY
Netto-EU-Beitrag

Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.

€ 1 878 125,00
Gesamtkosten

Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.

€ 1 878 125,00

Begünstigte (1)

Mein Booklet 0 0