Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Micro-scale dependent, time- and space-evolving rheologies: the key for generating strain localization in the Earth

Project description

Multiscale modelling of rheology physics

The EU-funded RhEoVOLUTION project plans to develop advanced models that could change our concept of rheology – the branch of physics that deals with the deformation and flow of matter – in geodynamics. The new models should predict the onset and evolution of strain localisation, which has so far been impossible to achieve. The multi-scale simulation tool the project proposes will be capable of linking relevant processes on the micro-, meso- and macroscales. The ultimate aim is to model how rock heterogeneity and anisotropy control strain localisation from the centimetre scale to scales of tens of kilometres in the earth.

Objective

"RhEoVOLUTION proposes a ""revolution"" in how we define rheology (the equations relating forces to deformation) in geodynamical models. It aims at predicting the onset and evolution of strain localization. Modeling spontaneous ductile strain localization has been impossible so far, because it depends on processes active at the mm scale, which cannot be explicitly simulated in geodynamical models. The tools we designed and propose to develop in RhEoVOLUTION will make it possible.
We will bridge scales and model how heterogeneity and anisotropy in the mechanical behavior of rocks control strain localization from the cm to the tens of km scale in the Earth. To do so, we will:
1. describe the heterogeneity of mechanical behavior of rocks deforming by dislocation creep by stochastic parameterizations of the rheology;
2. constrain these parameterizations by experiments with in-situ follow-up of the strain evolution and mesoscale models;
3. accelerate the calculation of the evolution of anisotropy during deformation by using supervised machine-learning;
4. quantify feedbacks between the main processes producing strain localization by comparing the predictions of models parameterized to simulate these processes to observations in natural shear zones.
RhEoVOLUTION will empower the geodynamics community with a predictive tool for strain localization. It will provide explanations for localized deformation in intraplate domains and predictions of the evolution of shear zones in extensional and convergent plate margins, enhancing our understanding of the architecture of passive margins and mountain belts. We postulate it will allow modeling the most evident expression of strain localization on Earth: Plate Tectonics, that is still a challenge >50 years after the scientific revolution that established this paradigm. The tools developed in RhEoVOLUTION will also allow predicting ductile strain localization in ice and metals with possible applications in glaciology and metallurgy."

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-ADG - Advanced Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2019-ADG

See all projects funded under this call

Host institution

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 2 500 000,00
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 2 500 000,00

Beneficiaries (1)

My booklet 0 0