Descripción del proyecto
Emular fenómenos exóticos de muchos cuerpos mediante puntos cuánticos
El modelo Hubbard es un modelo aproximado que describe la transición entre sistemas conductores y aislantes. Es el modelo más sencillo de partículas interactuantes en una red con solo dos términos en el Hamiltoniano: un término cinético que permite los saltos de fermiones (o bosones) entre emplazamientos adyacentes en la red y un término potencial consistente en una interacción «in situ». Pero a pesar de su sencillez, es extremadamente complejo de resolver matemáticamente en ordenadores convencionales. El proyecto financiado con fondos europeos QuDoFH se propone emular el Hamiltoniano Fermi–Hubbard mediante redes de puntos cuánticos. Su investigación se dedicará a tres fenómenos intrínsecos de la física cuántica de muchos cuerpos, a saber, la física del enlace de valencia resonante, la física del aislante de Mott dopado y las transiciones de fase cuántica.
Objetivo
We propose to use semiconductor quantum dot arrays as a well-controlled model system for emulating the Fermi-Hubbard Hamiltonian. In its simplest form, this Hamiltonian contains just two terms, describing hopping of fermions between adjacent sites in a lattice and an interaction energy for two fermions to occupy the same site. Despite its simplicity, this Hamiltonian produces a wealth of many-body physics phenomena, from exotic forms of magnetism to superconductivity. Their intricate quantum correlations make simulation on conventional computers exponentially difficult. This has motivated the use of model systems such as ultra-cold atoms to emulate Fermi-Hubbard physics. The in-situ parameter control, large energy scales compared to temperature and the flexibility of lithography, make gate-defined quantum dot arrays a highly versatile and powerful model system for emulating Fermi-Hubbard physics. This has long remained a distant prospect due to unavoidable disorder and cross-talk, but recent progress in our lab shows that these obstacles can be overcome in small arrays. This allowed us to observe Nagaoka ferromagnetism, a form of magnetism driven by electron-electron interactions that has not been reported in any system so far. In a series of breakthrough advances, we will define and operate extended square and triangular quantum dot ladders, targeting a complexity that cannot be matched by classical computers. We will focus on three phenomena at the heart of quantum many-body physics: 1) resonating-valence bond physics at half-filling, 2) doped Mott insulator physics and 3) quantum phase transitions. Besides measuring current through the system, we will perform single-shot measurements of charge and spin, giving access to multi-point correlation functions and time dependent evolution. These studies will increase our understanding of Fermi-Hubbard physics, with long-term application in materials design and discovery.
Ámbito científico (EuroSciVoc)
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural.
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural.
- ciencias naturalesciencias físicasfísica teóricafísica de partículasfermión
- ciencias naturalesciencias físicaselectromagnetismo y electrónicadispositivo semiconductor
- ciencias naturalesciencias físicaselectromagnetismo y electrónicasuperconductor
Para utilizar esta función, debe iniciar sesión o registrarse
Palabras clave
Programa(s)
Régimen de financiación
ERC-ADG - Advanced GrantInstitución de acogida
2628 CN Delft
Países Bajos