Project description
Chiral chemistry takes a leap forward with sustainable catalysts from earth-abundant metals
In the same way a glove fits a hand, molecules have the symmetry that controls their behaviour and interactions. Reversing the symmetry of molecules could mean the difference between effective and ineffective drugs, agricultural chemicals, flavours and fragrances. Chiral transition metal complexes – which are typically synthesised by combining metal salts or organometallic precursors with chiral ligands – are an important class of catalysts used in asymmetric catalysis. The EU-funded EARTHCAM project plans to design reactive chiral-at-metal catalysts based on earth-abundant metals. Researchers will extend a newly developed method that uses chiral-at-metal catalysts whose metal centre serves as both the stereogenic and the reactive centre for catalysis.
Objective
Asymmetric catalysis relies on the design of chiral catalysts and is dedicated to the economical generation of non-racemic chiral compounds, which are building blocks for the production of drugs, agricultural chemicals, flavors, fragrances, and materials. Chiral transition metal complexes constitute an important class of chiral catalysts and are typically synthesized by combining metal salts or organometallic precursors with chiral ligands. A neglected approach follows a different direction and exploits the generation of metal-centered chirality in the course of the assembly of achiral ligands around a central metal. Our group has pioneered the general use of such chiral-at-metal catalysts from noble metals, with the metal center both serving as the exclusive stereogenic center and at the same time acting as the reactive center for catalysis. The design of reactive chiral-at-metal catalysts based on earth-abundant metals, which have economical and environmental benefits, is the focus of this proposal. The design strategy appeals for its combination of sustainability (earth-abundant metals) and simplicity (achiral ligands). Furthermore, without the requirement for chiral motifs in the ligand sphere, untapped opportunities emerge for the design of chiral 3d metal complexes with distinct electronic properties and unique architectures. This unexplored chemical space for chiral catalysts will be applied to the challenging enantioselective functionalization of C(sp3)-H bonds with inexpensive and sustainable 3d metal catalysts.
The implementation of chiral-at-metal catalysts from earth-abundant metals will rely on taming the high lability of coordinative bonds of 3d metals to warrant a satisfactory configuration stability. This will be addressed by exploiting the chelate effect of tailored multidentate ligands in combination with strong-field ligands and attractive weak interactions between coordinated ligands.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-ADG - Advanced Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2019-ADG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
35037 Marburg
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.