Project description
Novel engineered bone grafts
Engineered bone tissue has many advantages over natural bone grafts, including safety and limitless supply. However, current engineering methods cannot generate large vascularised grafts capable of in vivo integration and remodelling. To address this problem, the EU-funded REBORN project proposes to combine biomaterials based on proteins obtained from the amniotic membrane and cells from the umbilical cord to develop a 3D device capable of supporting bone tissue formation. Scientists will use hydrogels to provide geometrical, mechanical and topographic cues as well as bioactive soluble factors to drive cell differentiation and recreate the bone marrow niche.
Objective
Engineered bone tissue has been viewed as a potential alternative to the traditional use of bone grafts, due to their limitless supply and no disease transmission. However, bone tissue engineering practices have not proceeded to clinical practice as it was not yet possible to fully recreate the right conditions to produce relevant large vascularized grafts and enabling their in vivo integration and remodelling. REBORN proposes rather unique toolboxes combining bionstructive biomaterials only based on human proteins obtained from the amniotic membrane (AM) and cells from the umbilical/blood cord for the ground-breaking advances of engineering totally time-self-regulated complex 3D devices, able to adjust the cascade of processes leading to faster high-quality and vascularized new bone tissue formation with minimum pre-processing of cells. Proteins from AM will be chemically modified with bioorthogonal clickable moieties enabling their selective association during the fabrication of liquified pockets or hydrogels. Perm-selective AM-protein membranes will be formed at the interface of aqueous-based emulsions to produce liquified pockets confining all necessary ingredients for internal in vitro tissue development to recreate the bone niche including: (i) the correct cells’ ratio, (ii) hydrogel MicroBlocks that will provide geometrical, mechanical and topographic cues to control cellular behaviour and (iii) bioactive soluble factors. Jammed liquified pockets will be assembled into a final desired implantable device, bound by the developed hydrogels, with clinically relevant size, shape and structural integrity, using non-conventional 3D bioprinting processing methodologies or by physical fixation in bioinspired, periosteum-like, regenerative membranes. Advanced techniques will be employed to characterise the new tissue developed in the hybrid devices, from the ultrastructure of the mineral/organic component, including under distinctive dynamic culturing conditions.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences biochemistry biomolecules proteins
- engineering and technology industrial biotechnology biomaterials
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-ADG - Advanced Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2019-ADG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
3810-193 Aveiro
Portugal
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.