Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

p-adic Langlands and the Emerton-Gee stack

Project description

New approach to the study of p-adic Galois representations

The Langlands programme is a grand unified theory of mathematics suggesting that the mathematics of algebra (Galois representations) and analysis (automorphic forms) are intimately related. Automorphy lifting theorems are the most powerful techniques that prove this connection. Despite their success in 2D Galois representations, the lack of understanding of Galois deformation rings makes their use challenging in higher dimensions. The EU-funded LEGS project will use a radically new approach to studying p-adic Galois representations – the Emerton–Gee stack. This object does not limit studies on infinitesimal neighbourhoods but rather enables the use of global geometric techniques.

Objective

Connections between automorphic forms and p-adic Galois representations are at the heart of the Langlands program and are the source of many of the most important advances in number theory. The most powerful technique for proving these connections is the use of automorphy lifting theorems. These theorems are well established in the two dimensional case, but are much weaker in higher dimensions, due to a lack of understanding of the corresponding Galois deformation rings. I propose to use a completely new way of studying p-adic Galois representations, which is known as the EmertonGee stack. This opens up a new horizon, because it will allow me to use global geometric techniques, rather than being limited to studying infinitesimal neighbourhoods as in all previous work over the last 30 years. I intend to completely prove the BreuilMzard conjecture, which is a major open problem, and implies automorphy lifting theorems for p-adic representations with optimal local conditions at p. This will put the higher-dimensional setting on an equal footing with the 2-dimensional case, opening up a new frontier. These theorems in turn have applications to problems such as the modularity of abelian surfaces, which is at the cutting edge of the Langlands program. I will completely resolve the weight part of Serres conjecture in arbitrary dimension; it is currently unknown in any dimension higher than 2. I also propose to use the EmertonGee stack to prove a geometrization of the p-adic Langlands correspondence, and to explore generalizations of the correspondence, going beyond the frontier reached 10 years ago, of 2-dimensional representations over the p-adic numbers. Finally, I will investigate a prismatic version of the EmertonGee stacks, and new connections between the p-adic Langlands correspondence and the global Langlands correspondence for function fields.

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-ADG - Advanced Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2019-ADG

See all projects funded under this call

Host institution

IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 2 195 110,00
Address
SOUTH KENSINGTON CAMPUS EXHIBITION ROAD
SW7 2AZ London
United Kingdom

See on map

Region
London Inner London — West Westminster
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 2 195 110,00

Beneficiaries (1)

My booklet 0 0