Projektbeschreibung
Neuer Ansatz zur Untersuchung p-adischer Galois-Darstellungen
Das Langlands-Programm ist eine große vereinheitlichte Theorie der Mathematik, die darauf hinweist, dass die Mathematik der Algebra (Galois-Darstellungen) und der Analyse (automorphe Formen) eng miteinander verbunden sind. Die „Lifting“-Theorie automorpher Formen ist eine leistungsstarke Technik, die diesen Zusammenhang belegt. Trotz des Erfolgs dieser Techniken bei 2D-Galois-Darstellungen macht das mangelnde Verständnis der Galois-Verformungsringe ihre Verwendung in höheren Dimensionen schwierig. Das EU-finanzierte Projekt LEGS wird einen radikal neuen Ansatz zur Untersuchung p-adischer Galois-Darstellungen verwenden – den Emerton-Gee-Stack. Dieses Objekt beschränkt keine Studien zu infinitesimalen Nachbarschaften, sondern ermöglicht die Verwendung globaler geometrischer Techniken.
Ziel
Connections between automorphic forms and p-adic Galois representations are at the heart of the Langlands program and are the source of many of the most important advances in number theory. The most powerful technique for proving these connections is the use of automorphy lifting theorems. These theorems are well established in the two dimensional case, but are much weaker in higher dimensions, due to a lack of understanding of the corresponding Galois deformation rings. I propose to use a completely new way of studying p-adic Galois representations, which is known as the EmertonGee stack. This opens up a new horizon, because it will allow me to use global geometric techniques, rather than being limited to studying infinitesimal neighbourhoods as in all previous work over the last 30 years. I intend to completely prove the BreuilMzard conjecture, which is a major open problem, and implies automorphy lifting theorems for p-adic representations with optimal local conditions at p. This will put the higher-dimensional setting on an equal footing with the 2-dimensional case, opening up a new frontier. These theorems in turn have applications to problems such as the modularity of abelian surfaces, which is at the cutting edge of the Langlands program. I will completely resolve the weight part of Serres conjecture in arbitrary dimension; it is currently unknown in any dimension higher than 2. I also propose to use the EmertonGee stack to prove a geometrization of the p-adic Langlands correspondence, and to explore generalizations of the correspondence, going beyond the frontier reached 10 years ago, of 2-dimensional representations over the p-adic numbers. Finally, I will investigate a prismatic version of the EmertonGee stacks, and new connections between the p-adic Langlands correspondence and the global Langlands correspondence for function fields.
Schlüsselbegriffe
Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).
Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).
Programm/Programme
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
HAUPTPROGRAMM
Alle im Rahmen dieses Programms finanzierten Projekte anzeigen
Thema/Themen
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Finanzierungsplan
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
ERC-ADG - Advanced Grant
Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen
Aufforderung zur Vorschlagseinreichung
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
(öffnet in neuem Fenster) ERC-2019-ADG
Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigenGastgebende Einrichtung
Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.
SW7 2AZ London
Vereinigtes Königreich
Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.