Descrizione del progetto
Nuovo approccio allo studio delle rappresentazioni p-adiche del gruppo di Galois
Il programma Langlands è una grande teoria unificata della matematica che suggerisce che la matematica dell’algebra (rappresentazioni di Galois) e l’analisi (forme automorfe) sono intimamente correlate. I teoremi di sollevamento dell’automorfismo sono le tecniche più potenti che dimostrano questa connessione. Nonostante il loro successo nelle rappresentazioni 2D di Galois, la mancanza di comprensione degli anelli di deformazione di Galois rende il loro uso impegnativo in dimensioni superiori. Il progetto LEGS, finanziato dall’UE, utilizzerà un approccio radicalmente nuovo per studiare le rappresentazioni p-adiche del gruppo di Galois, la pila di Emerton-Gee. Questo oggetto non limita gli studi all’ambito infinitesimale, ma consente l’uso di tecniche geometriche globali.
Obiettivo
Connections between automorphic forms and p-adic Galois representations are at the heart of the Langlands program and are the source of many of the most important advances in number theory. The most powerful technique for proving these connections is the use of automorphy lifting theorems. These theorems are well established in the two dimensional case, but are much weaker in higher dimensions, due to a lack of understanding of the corresponding Galois deformation rings. I propose to use a completely new way of studying p-adic Galois representations, which is known as the EmertonGee stack. This opens up a new horizon, because it will allow me to use global geometric techniques, rather than being limited to studying infinitesimal neighbourhoods as in all previous work over the last 30 years. I intend to completely prove the BreuilMzard conjecture, which is a major open problem, and implies automorphy lifting theorems for p-adic representations with optimal local conditions at p. This will put the higher-dimensional setting on an equal footing with the 2-dimensional case, opening up a new frontier. These theorems in turn have applications to problems such as the modularity of abelian surfaces, which is at the cutting edge of the Langlands program. I will completely resolve the weight part of Serres conjecture in arbitrary dimension; it is currently unknown in any dimension higher than 2. I also propose to use the EmertonGee stack to prove a geometrization of the p-adic Langlands correspondence, and to explore generalizations of the correspondence, going beyond the frontier reached 10 years ago, of 2-dimensional representations over the p-adic numbers. Finally, I will investigate a prismatic version of the EmertonGee stacks, and new connections between the p-adic Langlands correspondence and the global Langlands correspondence for function fields.
Parole chiave
Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).
Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).
Programma(i)
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
PROGRAMMA PRINCIPALE
Vedi tutti i progetti finanziati nell’ambito di questo programma
Argomento(i)
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Meccanismo di finanziamento
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
ERC-ADG - Advanced Grant
Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento
Invito a presentare proposte
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
(si apre in una nuova finestra) ERC-2019-ADG
Vedi tutti i progetti finanziati nell’ambito del bandoIstituzione ospitante
Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.
SW7 2AZ London
Regno Unito
I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.