Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

From Data-based to Model-based AI: Representation Learning for Planning

Project description

From data-based to model-based AI: representation learning for planning

Two main research threads in AI revolve around the development of data-based learners capable of inferring behaviour and functions from experience and data, and model-based learners capable of tackling intractable models like SAT, classical planning, and Bayesian networks. Learners, and in particular deep learners, have achieved considerable success but result in inflexible black boxes. Solvers, on the other hand, require models which are hard to build by hand. The EU-funded RLeap project aims at achieving an integration of both in the context of planning, by addressing and solving the problem of learning first-order symbolic representations from raw perceptions alone. The project can make a difference in how general, explainable and trustworthy AI can be understood and achieved.

Objective

Two of the main research threads in AI revolve around the development of data-based learners capable of inferring behavior and functions from experience and data, and model-based solvers capable of tackling well-defined but intractable models like SAT, classical planning, and Bayesian networks. Learners, and in particular deep learners, have achieved considerable success but result in black boxes that do not have the flexibility, transparency, and generality of their model-based counterparts. Solvers, on the other hand, require models which are hard to build by hand. RLeap is aimed at achieving an integration of learners and solvers in the context of planning by addressing and solving the problem of learning first-order planning representations from raw perceptions alone without using any prior symbolic knowledge. The ability to construct first-order symbolic representations and using them for expressing, communicating, achieving, and recognizing goals is a main component of human intelligence and a fundamental, open research problem in AI. The success of RLeap requires the development of radically new ideas and methods that will build on those of a number of related areas that include planning, learning, knowledge representation, combinatorial optimization and SAT. The approach to be pursued is based on a clear separation between learning the symbolic representations themselves, that is cast as a combinatorial problem, and learning the interpretations of those representations, that is cast as a supervised learning problem from targets obtained from the first part. RLeap will address both problems, not just in the planning setting but in the generalized planning setting as well where plans are general strategies. The project can make a significant difference in how general, explainable, and trustworthy AI can be understood and achieved. The PI has made key contribution to the main themes of the project that make him uniquely qualified to carry it forward.

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-ADG - Advanced Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2019-ADG

See all projects funded under this call

Host institution

RHEINISCH-WESTFAELISCHE TECHNISCHE HOCHSCHULE AACHEN
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 827 325,15
Address
TEMPLERGRABEN 55
52062 Aachen
Germany

See on map

Region
Nordrhein-Westfalen Köln Städteregion Aachen
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 827 325,15

Beneficiaries (2)

My booklet 0 0