Descrizione del progetto
Da un’intelligenza artificiale basata sui dati a una basata sui modelli: l’apprendimento della rappresentazione per la pianificazione
Due principali filoni di ricerca nell’IA ruotano attorno allo sviluppo di discenti basati sui dati capaci di inferire il comportamento e le funzioni dall’esperienza e dai dati e su discenti basati sui modelli in grado di occuparsi di modelli difficili quali SAT, pianificazione classica e reti bayesiane. I discenti, e in particolare i software di apprendimento profondo, hanno ottenuto un successo considerevole, ma conducono a scatole nere inflessibili. I solver, d’altro canto, richiedono modelli difficili da costruire a mano. Il progetto RLeap, finanziato dall’UE, si propone di ottenere l’integrazione di entrambi nel contesto della pianificazione, affrontando e risolvendo il problema dell’apprendimento di rappresentazioni simboliche di primo ordine provenienti solo da percezioni grezze. Il progetto può fare la differenza in come l’IA generale, spiegabile e affidabile possa essere compresa e ottenuta.
Obiettivo
Two of the main research threads in AI revolve around the development of data-based learners capable of inferring behavior and functions from experience and data, and model-based solvers capable of tackling well-defined but intractable models like SAT, classical planning, and Bayesian networks. Learners, and in particular deep learners, have achieved considerable success but result in black boxes that do not have the flexibility, transparency, and generality of their model-based counterparts. Solvers, on the other hand, require models which are hard to build by hand. RLeap is aimed at achieving an integration of learners and solvers in the context of planning by addressing and solving the problem of learning first-order planning representations from raw perceptions alone without using any prior symbolic knowledge. The ability to construct first-order symbolic representations and using them for expressing, communicating, achieving, and recognizing goals is a main component of human intelligence and a fundamental, open research problem in AI. The success of RLeap requires the development of radically new ideas and methods that will build on those of a number of related areas that include planning, learning, knowledge representation, combinatorial optimization and SAT. The approach to be pursued is based on a clear separation between learning the symbolic representations themselves, that is cast as a combinatorial problem, and learning the interpretations of those representations, that is cast as a supervised learning problem from targets obtained from the first part. RLeap will address both problems, not just in the planning setting but in the generalized planning setting as well where plans are general strategies. The project can make a significant difference in how general, explainable, and trustworthy AI can be understood and achieved. The PI has made key contribution to the main themes of the project that make him uniquely qualified to carry it forward.
Parole chiave
Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).
Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).
Programma(i)
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
PROGRAMMA PRINCIPALE
Vedi tutti i progetti finanziati nell’ambito di questo programma
Argomento(i)
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Meccanismo di finanziamento
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
ERC-ADG - Advanced Grant
Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento
Invito a presentare proposte
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
(si apre in una nuova finestra) ERC-2019-ADG
Vedi tutti i progetti finanziati nell’ambito del bandoIstituzione ospitante
Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.
52062 Aachen
Germania
I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.