Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

From Data-based to Model-based AI: Representation Learning for Planning

Descripción del proyecto

De la IA basada en datos a la basada en modelos: aprendizaje representativo para la planificación

Dos de las principales líneas de investigación en inteligencia artificial (IA) giran en torno al desarrollo de aprendices basados en datos capaces de inferir comportamientos y funciones a partir de la experiencia y los datos, y de aprendices basados en modelos capaces de abordar modelos inmanejables como SAT, planificación clásica y redes bayesanas. Los aprendices y, en particular, los aprendices profundos, han logrado un éxito considerable, pero acaban siendo cajas negras inflexibles. Los solucionadores, por otro lado, necesitan modelos que son difíciles de crear a mano. El proyecto financiado con fondos europeos RLeap tiene por objeto conseguir integrarlos a ambos en el contexto de la planificación, al abordar y resolver el problema del aprendizaje de representaciones simbólicas de primer orden únicamente a partir de percepciones brutas. El proyecto puede marcar la diferencia en la forma en que se puede entender y lograr una IA general, explicable y de confianza.

Objetivo

Two of the main research threads in AI revolve around the development of data-based learners capable of inferring behavior and functions from experience and data, and model-based solvers capable of tackling well-defined but intractable models like SAT, classical planning, and Bayesian networks. Learners, and in particular deep learners, have achieved considerable success but result in black boxes that do not have the flexibility, transparency, and generality of their model-based counterparts. Solvers, on the other hand, require models which are hard to build by hand. RLeap is aimed at achieving an integration of learners and solvers in the context of planning by addressing and solving the problem of learning first-order planning representations from raw perceptions alone without using any prior symbolic knowledge. The ability to construct first-order symbolic representations and using them for expressing, communicating, achieving, and recognizing goals is a main component of human intelligence and a fundamental, open research problem in AI. The success of RLeap requires the development of radically new ideas and methods that will build on those of a number of related areas that include planning, learning, knowledge representation, combinatorial optimization and SAT. The approach to be pursued is based on a clear separation between learning the symbolic representations themselves, that is cast as a combinatorial problem, and learning the interpretations of those representations, that is cast as a supervised learning problem from targets obtained from the first part. RLeap will address both problems, not just in the planning setting but in the generalized planning setting as well where plans are general strategies. The project can make a significant difference in how general, explainable, and trustworthy AI can be understood and achieved. The PI has made key contribution to the main themes of the project that make him uniquely qualified to carry it forward.

Palabras clave

Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).

Programa(s)

Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

ERC-ADG - Advanced Grant

Ver todos los proyectos financiados en el marco de este régimen de financiación

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

(se abrirá en una nueva ventana) ERC-2019-ADG

Ver todos los proyectos financiados en el marco de esta convocatoria

Institución de acogida

RHEINISCH-WESTFAELISCHE TECHNISCHE HOCHSCHULE AACHEN
Aportación neta de la UEn

Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.

€ 1 827 325,15
Dirección
TEMPLERGRABEN 55
52062 Aachen
Alemania

Ver en el mapa

Región
Nordrhein-Westfalen Köln Städteregion Aachen
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

€ 1 827 325,15

Beneficiarios (2)

Mi folleto 0 0