Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Back to the roots of data-driven dynamical system identification

Description du projet

Les nouvelles méthodes mathématiques permettent de traiter de façon homogène d’énormes volumes de données inexactes

L’omniprésente disponibilité des mégadonnées dans de nombreux domaines d’application allant de la santé (par exemple la génétique) à la durabilité (par exemple la modélisation des changements climatiques), en passant par l’industrie (par exemple la surveillance des processus industriels) ouvre de nombreuses perspectives pour une modélisation précise de ces observations. Ces modèles mathématiques sont utilisés à des fins d’analyse, de simulation, de prédiction, de suivi et de contrôle. Toutefois, la plupart, voire la totalité, des approches de modélisation actuelles sont heuristiques, ce qui signifie qu’elles nécessitent des choix a priori subjectifs, qui doivent être tranchés par l’utilisateur. Le projet Back to the Roots, financé par l’UE, étudiera en détail certaines des complexités mathématiques et algorithmiques qui se présentent, afin d’objectiver et d’automatiser ces choix: comment traiter des données «inexactes» (ce qui est toujours le cas avec des mesures réelles), comment caractériser mathématiquement la détermination du «meilleur» modèle et comment le calculer efficacement à l’aide d’algorithmes et d’ordinateurs de haute performance.

Objectif

To obtain data-driven dynamic models for simulation, prediction, monitoring, classification or control tasks, in applications e.g. in Industry 4.0 and eHealth, most identification methods ‘solve’ an optimization problem, relying on some nonlinear iterative algorithm. Undeniably, too many heuristics prevail: What do we mean by ‘solved’? Where did the algorithm converge to? Is the model globally optimal, unique and reproducible?
To tackle these scientific deficiencies, we design a framework to deal with inexact data. We solve a longstanding open problem of least squares optimality in system identification: for polynomial dynamical models, the optimal model derives from an eigenvalue problem. Hereto, we generalize notions from Algebraic Geometry (multivariate polynomials), Operator Theory (model spaces), System Theory (multidimensional realization) and Numerical Linear Algebra (matrix computations).
The first objective is to develop a mathematically rigorous realization approach that maps data onto new mathematical structures (multi-shift invariant projective subspaces).
The second objective is to conceive a ‘misfit-latency’ framework to optimally map inexact data to these mathematical structures. We prove this to be a multiparameter eigenvalue problem. We expect breakthroughs in system theoretic characterizations of optimality (covering all existing methods), in the generalization to multiple input-output and multidimensional models and in finding the global optimum in the linear dynamic H2 model reduction problem.
The third objective is to implement matrix computation algorithms for the results of the first two objectives, to root sets of multivariate polynomials, to solve multiparameter eigenvalue problems and to isolate only the minimizing roots. We focus on matrix aspects of large scale, sparsity and structure.
Deliverables will be publications, software, graduate course material and science outreach initiatives, in line with the PI’s excellent track record

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Mots‑clés

Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

ERC-ADG - Advanced Grant

Voir tous les projets financés dans le cadre de ce programme de financement

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

(s’ouvre dans une nouvelle fenêtre) ERC-2019-ADG

Voir tous les projets financés au titre de cet appel

Institution d’accueil

KATHOLIEKE UNIVERSITEIT LEUVEN
Contribution nette de l'UE

La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.

€ 2 485 925,00
Adresse
OUDE MARKT 13
3000 Leuven
Belgique

Voir sur la carte

Région
Vlaams Gewest Prov. Vlaams-Brabant Arr. Leuven
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

€ 2 485 975,00

Bénéficiaires (1)

Mon livret 0 0