Project description
Novel design and assessment methodology for sand mitigation measures
In desert environments and sandy coastal regions, windblown sand can increase management costs and also cause disasters in civil structures and infrastructures. The recent demand for sand mitigation measures (SMMs) is expected to increase further in the coming years. However, rigorous performance testing of SMMs is still absent in scientific literature and technical practice. This is because the nature of windblown sand makes analytical approaches inapplicable, and current experimental physical and computational approaches don’t meet the needs of infrastructure designers. To address this issue, the EU-funded HyPer SMM project aims to develop an innovative hybrid approach that will serve as a novel design and assessment methodology for SMMs. The approach will combine innovative wind–sand computational simulations and highly reliable wind–sand tunnel testing.
Objective
Civil structures and infrastructures in desert environments and sandy coastal regions are sensitive to windblown sand. Even if the problem was first tackled in the fifties, it has emerged as a key scientific, technical and economic issue in the last decade. Indeed, windblown sand effects can lead to several incremental costs in infrastructure management, and also disastrous events.
The demand for the design of Sand Mitigation Measures (SMM) has grown in the last decade and it is expected to further increase in the next years. However, the rigorous performance assessment of SMMs is still missing in the scientific literature and technical practice. On the one hand, the multiphysics and multiscale nature of the involved phenomena make analytical approaches inapplicable. On the other hand, current experimental physical and computational approaches do not fulfill alone modelling requirements and practical needs of infrastructure designers.
The HyPer SMM project aims at finding a way forward by developing an innovative hybrid approach, as a brand-new design-and-assessment methodology in the field. It combines innovative Wind-Sand Computational Simulations (WSCS) and highly reliable Wind-Sand Tunnel Test (WSTT).
The main scientific and training objectives of the project include:
- the development of highly reliable WSTT to assess SMM performance;
- the extension of WSTT-based SMM performance from scale to full-scale conditions by means of WSCS;
- the drafting of best practices/guidelines to SMM performance assessment;
- enrich Experience Researcher’s (ER) scientific competences on the specific topic;
- enforce ER’s management skills and professional independence.
In order to guarantee the multidisciplinary and intersectoral objectives, the layout of the project envisages the ER hosting at a research center in fluid dynamics (Von Karman Institute, BE) and the ER secondment at a consulting company in computational simulations (Optiflow, FR).
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences classical mechanics fluid mechanics fluid dynamics
- natural sciences computer and information sciences computational science multiphysics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2019
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
1640 Sint-Genesius-Rode
Belgium
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.