Project description
Seeds that go with the flow are no longer necessary to evaluate tomorrow's aeroengines
One of the most important challenges in designing experiments is ensuring that you are not altering the phenomena you would like to measure with your measurement method. The evaluation of air flows in aeroengine inlets is currently performed using invasive methods. Alternative non-invasive ones require seeding particles to observe flow distortions, and these particles can interfere with engine operation. The EU-funded SINATRA project is developing an innovative, laser-based, non-intrusive, seed-free way to test inlet flow distortion with high spatial and temporal resolution, thus facilitating the streamlined and accurate testing of next-generation aircraft designs.
Objective
For future, novel closely coupled airframe-engine architectures with BLI concepts, current testing technology struggles to accurately assess the inlet flow distortion levels that influence the engine stability due to the low spatial and temporal resolution of current experimental methods.
New concepts will require support of numerical means, ground facilities as well as in-flight testing.
Non-intrusive, laser-based solutions such as PIV or DGV require the inlet flow to be seeded, which comes with a number of caveats including the requirement of uniform seeding distribution across the measurement plane and the installation of seeding rakes within the intake sub-system. This is notably challenging in airborne measurements.
A promising laser-based measuring technology is the seedless Filtered Rayleigh Scattering (FRS) which would be ideal for in-flight measurements. Due to its potential to offer spatial and temporal resolution similar to other laser methods, it allows even highly dynamic flow distortions generated by the geometry of the complex intakes to be clearly understood.
SINATRA plans to further mature the FRS technology and provide the necessary outlook by achieving the following: a) Develop and validate up to TRL4 an FRS measuring system prototype, using a CW laser, for time averaged distortion measurements b) upgrade the above prototype, to demonstrate an FRS measuring system working with a pulsed laser thus showing the capability of the technology to measure instantaneous distortions on a unsteady flow up to TRL3, c) provide a ground test inlet distortion facility that will be available to the whole European aeronautical, industrial & scientific community enabling a wide range of non-intrusive flow measurements representative of future architectures to be explored simultaneously and d) use the distortion data from the FRS measurements to characterise the distorted flows that are pertinent to advanced propulsion systems by means of distortion descriptors.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology mechanical engineering vehicle engineering aerospace engineering aircraft
- natural sciences physical sciences optics laser physics pulsed lasers
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.3.4. - SOCIETAL CHALLENGES - Smart, Green And Integrated Transport
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.3.4.5.10. - Thematic Topics
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
RIA - Research and Innovation action
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-CS2-CFP10-2019-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
MK43 0AL Cranfield - Bedfordshire
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.