Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

First Steps in Mirror Symmetry for Generalized Complex Geometry

Project description

Mirror, mirror on the wall: A closer look at generalised complex geometry

Generalised complex geometry includes complex and symplectic geometry as its 'extremal' special cases, but generalised complex structures in full generality are not yet well-understood. Complex and symplectic geometry are related to each other through mirror symmetry, a special relationship between geometric objects of relevance to string theory. Although some important results related to complex or symplectic geometry have been extended to generalised complex structures, there has yet been no extension of mirror symmetry to these structures. The EU-funded FuSeGC project plans to change that with the first such result.

Objective

Generalized complex geometry unifies complex and symplectic geometry, two important research areas in modern pure mathematics.
While generalized complex (GC) structures in full generality are not yet well-understood, a number of important results from complex or symplectic geometry have already been extended to these more general structures. Further, complex and symplectic geometry are intimately related to each other via mirror symmetry, a conjectured duality between certain complex and symplectic manifolds discovered in theoretical physics in the context of string theory. This duality has been proven in special cases.
For this project I propose an approach to extend homological mirror symmetry to certain subclasses and examples of GC manifolds, centred around three objectives:
(O1) Quantify the effect of stable GC compactifications of Landau-Ginzburg mirrors of del Pezzo surfaces on their Fukaya category.
(O2) Construct a Wrapped Fukaya category for oriented surfaces with log symplectic structures.
(O3) Develop and study a notion of 'holomorphic families of Fukaya categories'.
In particular in the case of (O1) and (O3), the construction of a Fukaya-type category would immediately suggest mirror partners for certain classes of examples, the first extension of mirror symmetry to the GC context.
During my PhD, I proved foundational results on Lagrangian-type submanifolds with boundary of stable GC manifolds, which naturally arise in examples and are candidates for objects of Fukaya-Seidel-type categories of stable GC manifolds.
As an MSC fellow, I would profit from world-leading expertise on symplectic geometry and Fukaya categories at my third-country host institution, while bringing in expertise on the novel research area of generalized geometry. I am looking forward to expanding my own skills in instruction and supervision through a mini course on generalized complex geometry and a Master's thesis project at my EU host KU Leuven.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2019

See all projects funded under this call

Coordinator

KATHOLIEKE UNIVERSITEIT LEUVEN
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 266 425,92
Address
OUDE MARKT 13
3000 LEUVEN
Belgium

See on map

Region
Vlaams Gewest Prov. Vlaams-Brabant Arr. Leuven
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 266 425,92

Partners (1)

My booklet 0 0