Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

First Steps in Mirror Symmetry for Generalized Complex Geometry

Descrizione del progetto

Specchio, servo delle mie brame... Uno sguardo più attento alla geometria complessa generalizzata

La geometria complessa generalizzata include la geometria complessa e quella simplettica quali casi speciali «estremi»; tuttavia, le strutture complesse generalizzate in piena generalità non sono ancora ben comprese. La geometria complessa e la geometria simplettica sono legate l’una all’altra attraverso la simmetria speculare, una relazione speciale tra oggetti geometrici di rilevanza per la teoria delle stringhe. Anche se alcuni importanti risultati relativi alla geometria complessa o simplettica sono stati estesi a strutture complesse generalizzate, la simmetria speculare non è stata ancora estesa a queste strutture. Il progetto FuSeGC, finanziato dall’UE, prevede di cambiare questa situazione con il primo di questi risultati.

Obiettivo

Generalized complex geometry unifies complex and symplectic geometry, two important research areas in modern pure mathematics.
While generalized complex (GC) structures in full generality are not yet well-understood, a number of important results from complex or symplectic geometry have already been extended to these more general structures. Further, complex and symplectic geometry are intimately related to each other via mirror symmetry, a conjectured duality between certain complex and symplectic manifolds discovered in theoretical physics in the context of string theory. This duality has been proven in special cases.
For this project I propose an approach to extend homological mirror symmetry to certain subclasses and examples of GC manifolds, centred around three objectives:
(O1) Quantify the effect of stable GC compactifications of Landau-Ginzburg mirrors of del Pezzo surfaces on their Fukaya category.
(O2) Construct a Wrapped Fukaya category for oriented surfaces with log symplectic structures.
(O3) Develop and study a notion of 'holomorphic families of Fukaya categories'.
In particular in the case of (O1) and (O3), the construction of a Fukaya-type category would immediately suggest mirror partners for certain classes of examples, the first extension of mirror symmetry to the GC context.
During my PhD, I proved foundational results on Lagrangian-type submanifolds with boundary of stable GC manifolds, which naturally arise in examples and are candidates for objects of Fukaya-Seidel-type categories of stable GC manifolds.
As an MSC fellow, I would profit from world-leading expertise on symplectic geometry and Fukaya categories at my third-country host institution, while bringing in expertise on the novel research area of generalized geometry. I am looking forward to expanding my own skills in instruction and supervision through a mini course on generalized complex geometry and a Master's thesis project at my EU host KU Leuven.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Parole chiave

Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).

Programma(i)

Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

(si apre in una nuova finestra) H2020-MSCA-IF-2019

Vedi tutti i progetti finanziati nell’ambito del bando

Coordinatore

KATHOLIEKE UNIVERSITEIT LEUVEN
Contributo netto dell'UE

Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.

€ 266 425,92
Indirizzo
OUDE MARKT 13
3000 LEUVEN
Belgio

Mostra sulla mappa

Regione
Vlaams Gewest Prov. Vlaams-Brabant Arr. Leuven
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

€ 266 425,92

Partner (1)

Il mio fascicolo 0 0