Descripción del proyecto
Crear conexiones más fuertes entre la teoría K topológica y la algebraica
En matemáticas, la teoría K es el estudio de un anillo generado por fibrados vectoriales sobre un espacio topológico. En general, hay dos tipos principales de teoría K: la topológica y la algebraica. El objetivo del proyecto financiado con fondos europeos K-theory es descubrir conexiones fuertes entre ambos tipos. El proyecto ampliará el trabajo previo que estableció los fundamentos de un espectro de teoría K algebraica real que condujo a una solución de una conjetura de Hesselholt–Madsen. También tendrá en cuenta los resultados recientes en la teoría K algebraica que prueban la existencia de un espectro de un anillo (el anillo de puntos) que determina el fallo de escisión en la teoría K.
Objetivo
Algebraic $K$-theory -- Arithmetic and Topology. The goal of the proposed project is to use recent results in algebraic K-theory to further the connection between algebraic K-theory on the one hand, and arithmetic and topology on the other. This will split the proposed project into two parts: The one exhibiting connections to topology, more precisely the topology of manifolds and Poincaré duality spaces, and the other exhibiting connections to arithmetic geometry, more precisely gaining access at explicit calculations of K-theory groups of (spectral) schemes. Both main goals build on previous work in which I played a role, on the one hand establishing the foundations of a new ``real algebraic K-theory spectrum'' which leads in particular to a solution of a conjecture of Hesselholt--Madsen, and on the other hand a recent result in algebraic K-theory which proves the existence of a ring spectrum, the circle-dot ring, which determines the failure of excision in K-theory. The pure existence (and some formal properties) of this ring have already been exploited for many applications, and the goal of this part of the project is to make the circle-dot ring more explicit and use this new knowledge for explicit computations.
Ámbito científico (EuroSciVoc)
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..
- ciencias naturales matemáticas matemáticas puras topología
- ciencias naturales matemáticas matemáticas puras aritmética
- ciencias naturales matemáticas matemáticas puras geometría
Para utilizar esta función, debe iniciar sesión o registrarse
Le pedimos disculpas, pero se ha producido un error inesperado durante la ejecución.
Necesita estar autentificado. Puede que su sesión haya finalizado.
Gracias por su comentario. En breve recibirá un correo electrónico para confirmar el envío. Si ha seleccionado que se le notifique sobre el estado del informe, también se le contactará cuando el estado del informe cambie.
Programa(s)
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
PROGRAMA PRINCIPAL
Ver todos los proyectos financiados en el marco de este programa -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
Ver todos los proyectos financiados en el marco de este programa
Tema(s)
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Régimen de financiación
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
Ver todos los proyectos financiados en el marco de este régimen de financiación
Convocatoria de propuestas
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
(se abrirá en una nueva ventana) H2020-MSCA-IF-2019
Ver todos los proyectos financiados en el marco de esta convocatoriaCoordinador
Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.
1165 KOBENHAVN
Dinamarca
Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.