Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

Machine state forecasting technology coupled with product quality control to unleash productivity for the manufacturing sector (EnCORE)

Descrizione del progetto

Prevedere il guasto alle macchine prima che si verifichi

La fabbrica del futuro sarà in grado di prevedere e rispondere a tutto, dalle singole macchine ai sistemi della linea di produzione. Passando dalla manutenzione programmata e dal servizio regolare delle macchine alla manutenzione predittiva, le fabbriche saranno in grado di evitare il guasto alle risorse prevedendo i problemi ancor prima che si verifichino. Il progetto EnCORE, finanziato dall’UE, svilupperà un approccio innovativo alla manutenzione predittiva. Ad esempio, esso utilizzerà la tecnologia di apprendimento profondo per consentire di prevedere la condizione futura di una macchina attraverso dati che corrispondono agli stati normali della macchina. Il progetto sta lavorando per commercializzare questa nuova soluzione. Il software è in fase di convalida su due applicazioni: una macchina per lo stampaggio a compressione che produce involucri per bottiglie di plastica e una sagomatrice che produce lame per rasoi.

Obiettivo

In the manufacturing sectors, the traditional planned maintenance approach is no longer viable, as it cannot cope with the ever-rising complexity of production systems. This pressing problem hurts industry’s profitability, and unplanned downtime costs industrial manufacturers €43 billion per year. This pressing problem has fuelled the growth of the predictive maintenance market. Currently, predictive maintenance solutions employ typical machine learning approaches based on monolithic rule-based predictions and require from the customer labelled data that correspond to defective machine states. This impedes the penetration of predictive maintenance in the industry. EnCORE is the fruit of 5 years of R&D to develop proprietary deep neural networks fit for predictive maintenance applications. Our solution uses best-in-class deep learning technology removing the overheads related with data preparation and enable the prediction of machine’s future condition using data that correspond to normal machine states. This is a game changing approach in the predictive maintenance industry. EnCORE is at TRL-6, with our software being validated at two different applications, (1) a compression moulding machine that produces plastic bottle enclosures/caps and (2) a cold forming machine that produces razor blades. Our target market will be the Food & Beverage and Consumer Goods industries targeting both OEMs of machinery and End-Users use such machinery. To take our product to the market, we will employ an hybrid business model using both direct sales and sales through industrial IoT platforms. EnCORE’s unique offering unlocks tremendous value for our customers; this will fuel the adoption of our solution by the industry. In the commercialisation period, we forecast cumulative profits of about €15 million with a strong Return on Investment (ROI) of €13 million. This will allow us to grow our workforce by 83 new employees, to meet the expected market demand for our breakthrough product.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: https://op.europa.eu/it/web/eu-vocabularies/euroscivoc.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Programma(i)

Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

SME-1 - SME instrument phase 1

Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

(si apre in una nuova finestra) H2020-EIC-SMEInst-2018-2020

Vedi tutti i progetti finanziati nell’ambito del bando

Coordinatore

CORE INNOVATION AND TECHNOLOGY OE
Contributo netto dell'UE

Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.

€ 50 000,00
Indirizzo
DELAGRAMMATIKA 5
341 00 Chalkis
Grecia

Mostra sulla mappa

PMI

L’organizzazione si è definita una PMI (piccola e media impresa) al momento della firma dell’accordo di sovvenzione.

Regione
Κεντρική Ελλάδα Στερεά Ελλάδα Εύβοια
Tipo di attività
Private for-profit entities (excluding Higher or Secondary Education Establishments)
Collegamenti
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

€ 71 429,00
Il mio fascicolo 0 0