Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Properties of nanomaterials made from misfit-layered compounds revealed by electron microscopy and simulations

Project description

Nanomaterials from misfit layered compounds under study

Misfit layered compounds is a relatively new class of nanomaterials that consist of molecular slabs with different chemical compositions and periodicities that are stacked in an alternating manner. The EU-funded PROMISES project will integrate experimental and theoretical work to extract more information about the structure and (opto)electronic properties of these nanomaterials. In particular, it will combine high-resolution electron microscopy, X-ray photoelectron spectroscopy and cathodoluminescence imaging. The advanced characterisation methods will produce valuable data that will serve as input for ab initio simulations of this class of nanomaterials.

Objective

The novel class of nanomaterials made from misfit-layered compounds offers intriguing properties. However, due to the complex, non-symmetric, structure of the misfit-layered compounds even down to the atomic scale, the analysis of these nanomaterials is a highly challenging task. Our PROMISES proposal will allow to reveal the structure and (opto)electronic properties of these nanomaterials (especially 1D nanomaterials) by combining an experimental and theoretical approach. The experimental analysis comprises advanced electron microscopy and spectroscopy at high spatial resolution as well as related experimental techniques, such as x-ray photoelectron spectroscopy and cathodoluminescence, all of which will be applied to analyse individual nanostructures. The obtained experimental results, particularly once the atomic structure has been revealed, will serve as a basis for the theoretical analysis that will be conducted via ab-initio simulations using the time-dependent variant of the density functional theory. We especially strive for studying these 1D nanomaterials under external stimuli such as elevated and liquid-nitrogen temperature and biasing to assess their properties under application-relevant conditions by employing in-situ electron microscopy. With this approach, we intend to fully reveal the structure and properties of the nanomaterials, which will be of great interest to a broad audience and potentially fuels their application. The work will be carried out by an experienced researcher with a strong background in methodological development of electron microscopy who will diversify and enhance his competences by means of an experimental analysis of the novel class of nanomaterials and by acquiring skills in computational physics. In addition, our PROMISES proposal will strengthen the collaboration between the hosting institutions and enable the main hosting institution to reinforce crucial competence in nanofabrication and ab-initio simulations.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2019

See all projects funded under this call

Coordinator

UNIVERSIDAD DE ZARAGOZA
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 172 932,48
Address
CALLE PEDRO CERBUNA 12
50009 ZARAGOZA
Spain

See on map

Region
Noreste Aragón Zaragoza
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 172 932,48
My booklet 0 0