Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

High Content Microanalytical Ramanomics for Ultraquantitative Phenotyping of Individual Stem Cells and Bioengineered Organoids

Project description

An analytical platform for organoid profiling

Organoids are emerging as promising tools for drug discovery and for studying disease pathogenesis. However, challenges associated with the capacity of organoids to recapitulate the complex structure and function of actual biological tissues and organs have limited their use. To address this, scientists of the EU-funded UltraRamanomics project propose to develop a bioanalytical platform for the phenotypic profiling of organoids derived from individual stem cells and human induced pluripotent stem cells. Using spectroscopy-based biochemical measurements, the platform will offer a direct comparison of different organoid models with great spatial resolution, filling a knowledge gap in stem cell organoid research.

Objective

Human induced pluripotent stem (hiPS) cell-based organoids have recently emerged as a promising model system to recapitulate the structure and function of actual biological tissues and organs. These 3D self-organized multi-cellular tissue systems bridge the gap from cell to tissue/organ levels, providing bio-relevant model systems with foreseeable utility in drug discovery, regenerative medicine, and the study of disease pathogenesis, but the increased complexity and unique attributes of each system introduces new challenges in cell culture and experimental reproducibility. While organoids offer profound potential for applications in biological and biomedical research, their scientific value is limited by how closely they mimic the in vivo tissue systems they are intended to model. To achieve a successful organoid-based predictive model system, it is crucial to have a quantitative biochemical and structural analysis technique for single cells and organoids.
In UltraRamanomics, I will develop a robust quantitatively-calibrated bioanalytical platform for high content phenotypic profiling of individual stem cells and hiPS cell-derived organoids, to allow direct structural and quantitative compositional comparison of organoid models in absolute biochemical measurements, thereby addressing the currently unmet analytical need. The platform will be based on micro-Raman spectroscopy – enabling direct measurements of the absolute biochemical composition of single-cells and tissue organoids with unprecedented spatial resolution – to provide a novel analytical solution to the existing gap in stem cell organoid research. This proposal takes full advantage of recent advances in ultraquantitative micro-calibration technology I developed during my PhD, quantitative volumetric Raman imaging (qVRI) methodology developed by the Stevens Group, and the organoid-on-a-chip platform in development at the Centre of Excellence Hybrid Technology Hub with the Krauss Group (Secondment).

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2019

See all projects funded under this call

Coordinator

IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 212 933,76
Address
SOUTH KENSINGTON CAMPUS EXHIBITION ROAD
SW7 2AZ London
United Kingdom

See on map

Region
London Inner London — West Westminster
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 212 933,76
My booklet 0 0