Project description
How drought affects river network carbon dynamics
Climate change is responsible for hydrological droughts that can cause river drying, which in turn modifies biodiversity and organic matter (OM) decomposition. The OM, which includes carbon-based compounds, is transported by the flow of water and through the dispersal of the organisms that consume it. Drying alters OM transport and dispersal and as a result changes carbon cycling and CO2 emissions. However, the understanding of climate change effects on the entire river network is limited. The EU-funded MetaDryNet project will examine the effects of drying on OM transport, organism dispersal and CO2 emissions in intermittent river networks by combining meta-analysis, network-scale field experiments and modelling. The project will increase our knowledge of how resources and biodiversity are bound with drying river networks.
Objective
One of the greatest challenges of the 21st century is to understand and mitigate the effects of climate change on earth ecosystems. Climate change increases the frequency and intensity of hydrological droughts worldwide. In rivers, drying (i.e. the loss of surface water) is a severe disturbance that alters biodiversity and ecosystem functions such as organic matter (OM) decomposition with often negative consequences for ecosystem services (e.g. water purification) and human activities (e.g. water consumption). River networks are an aquatic continuum in a terrestrial matrix in which OM is transported, and organisms disperse laterally: from terrestrial to aquatic environment, vertically: from the riverbed surface to the subsurface and longitudinally: along the network. Drying, modifies OM transport and dispersal by cutting the water continuum, potentially altering an entire river network´s OM decomposition dynamics, and hence carbon cycling and CO2 emissions. Although, much is known about the effect of drying at local scales, very little is known about its effects at the entire river network scale. Only studies done at an appropriate large scale can adequately inform and help to develop an adaptive management that minimizes drying impacts on river ecosystems and human activities. By combining meta-analysis, network-scale field experiments and modelling, MetaDryNet will explore the effects of drying on OM transport and decomposer organism dispersal to determine how drying affects OM decomposition and CO2 emissions in river networks. Using new technologies, novel ecological theories and complex modelling approaches this research is highly innovative and will allow to improve our understanding of how resources and biodiversity are linked in space and time in drying river networks. This project will contribute to advance ecological theories but also offer guidance for river management and conservation under global changes.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology chemical engineering separation technologies desalination reverse osmosis
- natural sciences biological sciences ecology ecosystems
- natural sciences earth and related environmental sciences atmospheric sciences climatology climatic changes
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2019
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
75007 Paris
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.