Skip to main content
European Commission logo
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Cascade synthesis of ethanol and acetate via microbial fermentation of syngas produced photoelectrochemically by molecular catalysts on BiVO4-perovskite tandem artificial leaf

Descrizione del progetto

Una foglia artificiale combina materiali fotovoltaici recentissimi, batteri e catalizzatori molecolari

I cambiamenti climatici stanno rendendo più urgente l’impiego di energia sostenibile e pulita, che riduce la combustione dei combustibili fossili e mitiga l’anidride carbonica (CO2) atmosferica. I combustibili fossili convenzionali derivano dai resti fossili di organismi una volta viventi. Oltre ai combustibili, numerose sostanze chimiche di rilevanza commerciale hanno origine nella chimica organica, la chimica dei composti a base di carbonio. Non sorprende il fatto che la natura non abbia rivali nella sua capacità di eseguire reazioni catalitiche complesse rilevanti per la chimica organica. Il progetto MicrobialLEAF, finanziato dall’UE, sta reclutando batteri per contribuire alla conversione fotoelettrochimica della CO2 in sostanze chimiche e combustibili ricchi di energia, in un sistema artificiale a foglie con materiali fotovoltaici d’avanguardia. Ciò consentirà la sintesi rinnovabile dei prodotti multicarbonici alimentata in modo naturale dal sole.

Obiettivo

The photoelectrochemical conversion of the greenhouse gas carbon dioxide (CO2) to energy-rich chemicals and fuels is an attractive strategy towards climate change remediation and a circular carbon economy. However, the renewable synthesis of complex organic molecules using solar power still faces several challenges for practical application. Current synthetic systems, which can reach high light absorption and charge separation efficiencies, still rely on the use of expensive materials with improvable specificity for the generated products. On the other hand, biological systems such as microbes are far superior performing complex catalytic chemistry (C-C coupling, multi-electron catalysis) with high product specificity. The synergistic combination of synthetic and biological components enables novel synthesis pathways, otherwise inaccessible abiotically, to generate useful chemicals and fuels with higher efficiency and product specificity. The proposed project aims to build a proof-of-concept microbial hybrid artificial leaf to generate ethanol and acetate via fermentation of hydrogen and carbon monoxide (syngas) produced by molecular catalysts immobilized on an artificial leaf. The molecular catalysts will be embedded in a highly porous carbon-based cathode to generate the syngas from aqueous CO2 to feed locally the bacterium Clostridium ljungdahlii within the pores, a novel approach compared to current decoupled microbial hybrid systems. The proposed artificial leaf will integrate state-of-the-art BiVO4 and perovskite components, for efficient light absorption, charge separation and water oxidation, with the cathode. This microbial leaf will be the first example of cascade catalysis where molecular catalysts and microbes will work together to produce multi-carbon products, enabling the study of abiotic-biotic interfaces key to design new materials for improved solar (bio)chemicals generation.

Coordinatore

THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Contribution nette de l'UE
€ 224 933,76
Indirizzo
TRINITY LANE THE OLD SCHOOLS
CB2 1TN Cambridge
Regno Unito

Mostra sulla mappa

Regione
East of England East Anglia Cambridgeshire CC
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale
€ 224 933,76