Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Towards an Automated and exPlainable ATM System

CORDIS proporciona enlaces a los documentos públicos y las publicaciones de los proyectos de los programas marco HORIZONTE.

Los enlaces a los documentos y las publicaciones de los proyectos del Séptimo Programa Marco, así como los enlaces a algunos tipos de resultados específicos, como conjuntos de datos y «software», se obtienen dinámicamente de OpenAIRE .

Resultado final

Final Project Results Report (se abrirá en una nueva ventana)

Report including the final publishable summary report and all the technical activities performed during the whole project It includes an assessment of the project achievements towards the RD initial goals An initial version will be available at M22

TAPAS Validation Plan (se abrirá en una nueva ventana)

This document develops a clear plan of the validation activities that will be conducted within the project for each one of the target domains CDR and ATFM including the scope of the validation approach and methodology relevant criteria to be assessed and humanspecific measures that need to be gathered for the defined scenarios

Consolidated Requirements and Functional Roadmap (se abrirá en una nueva ventana)

This document will deliver a merge of contextual requirements from both the operational and technical use cases descriptions, as well as a roadmap of delegation of functionalities between human actors and the machine.

Use Cases Transparency Requirements (se abrirá en una nueva ventana)

This document will consolidate the transparency requirements derived from the human machine interactions for each level of automation in the ATFM and CDR operational use cases, and that will need to be accomplished during the implementation activities. A first draft will be available at M6 for the ATFM transparency requirements.

TAPAS Validation Report (se abrirá en una nueva ventana)

This document will consolidate the results of the analysis performed based on the feedback and data gathered during the execution of the ATFM and CDR experiments including objectives achieved further research and recommendations for derivation of transparency criteria A first draft will be available at M14 containing the preliminary results of the ATFM experiment

TAPAS Integrated Prototype (se abrirá en una nueva ventana)

Document that contains the description of the ATFM and CDR prototype including functionalities and improvements derived from the validation activities conducted A first draft will be available at M11 describing the ATFM prototype

Principles for Transparency in AI/ML automation in ATM (se abrirá en una nueva ventana)

This document constitutes the final identification of the requirements that will ensure that different transparencyexplainability criteria are fulfilled when AIMLbased models are implemented This document will take as input the results from the validation activities conducted along the project and will combine analysis and expertise to specify the requirements A first draft will be available at M14

Reference of XAI Methods (se abrirá en una nueva ventana)

This document will provide an identification of promising state of the art explainable reinforcement learning methods and deliver a reference of the XAI techniques for detecting problems and prescribing solutions in the ATFM and CDR operational cases A first draft will be available at M12 delivering a reference for the ATFM prototype

Visualizations and Visual Analytics methods (se abrirá en una nueva ventana)

Description of the Visualizations and Visual Analytics methods implemented to improve the explainability and understandability of XAI ATFM and CDR Operational Cases A first draft will be available at M12 containing the description of the visualizations and visual analytics methods implemented for the ATFM use case

Exploitation and Dissemination Plan (se abrirá en una nueva ventana)

This deliverable comprises the planning of the dissemination exploitation and communication activities

TAPAS Use Cases Description (se abrirá en una nueva ventana)

This document will describe in detail the use cases to be developed under TAPAS project: (a) from the operational point of view; and (b) from the technological perspective, providing also additional requirements and feasibility analysis of the solutions proposed.

Exploitation and Dissemination Report (se abrirá en una nueva ventana)

This deliverable comprises the results of the implementation of the dissemination exploitation and communication activities according to the Exploitation and Dissemination Plan A first draft will be available at M24

Publicaciones

Automating the resolution of flight conflicts: Deep reinforcement learning in service of air traffic controllers (se abrirá en una nueva ventana)

Autores: George Vouros, George Papadopoulos, Alevizos Bastas, Jose Manuel Cordero, Ruben Rodriguez Rodriguez
Publicado en: Volume 351: PAIS 2022, 2022
Editor: PAIS (Prestigious Applications of Intelligent Systems)
DOI: 10.48550/arxiv.2206.07403

Supporting Visual Exploration of Iterative Job Scheduling (se abrirá en una nueva ventana)

Autores: Gennady Andrienko, Natalia Andrienko, Jose Manuel Cordero Garcia, Dirk Hecker, George A. Vouros
Publicado en: IEEE Computer Graphics and Applications, Edición 02721716, 2022, ISSN 0272-1716
Editor: Institute of Electrical and Electronics Engineers
DOI: 10.1109/mcg.2022.3163437

Explaining deep reinforcement learning decisions in complex multiagent settings: towards enabling automation in air traffic flow management (se abrirá en una nueva ventana)

Autores: Theocharis Kravaris, Konstantinos Lentzos, Georgios Santipantakis, George A. Vouros, Gennady Andrienko, Natalia Andrienko, Ian Crook, Jose Manuel Cordero Garcia & Enrique Iglesias Martinez
Publicado en: Applied Intelligence, Edición 0924669X, 2022, ISSN 0924-669X
Editor: Kluwer Academic Publishers
DOI: 10.1007/s10489-022-03605-1

Visual Analytics for Human-Centered Machine Learning (se abrirá en una nueva ventana)

Autores: N. Andrienko, G. Andrienko, L. Adilova and S. Wrobel
Publicado en: IEEE Computer Graphics and Applications, Edición 02721716, 2022, ISSN 0272-1716
Editor: Institute of Electrical and Electronics Engineers
DOI: 10.1109/mcg.2021.3130314

Explainable Deep Reinforcement Learning: State of the Art and Challenges (se abrirá en una nueva ventana)

Autores: George A. Vouros
Publicado en: ACM Computing Surveys, Edición 03600300, 2022, ISSN 0360-0300
Editor: Association for Computing Machinary, Inc.
DOI: 10.1145/3527448

Deep Multiagent Reinforcement Learning Methods Addressing the Scalability Challenge (se abrirá en una nueva ventana)

Autores: Theocharis Kravaris and George A. Vouros
Publicado en: Multi-Agent Technologies and Machine Learning, 2022
Editor: IntechOpen
DOI: 10.5772/intechopen.105627

Buscando datos de OpenAIRE...

Se ha producido un error en la búsqueda de datos de OpenAIRE

No hay resultados disponibles

Mi folleto 0 0