Project description
Removing water pollutants using magnetite nanoparticles
Artificial aggregates of iron (hydro)oxides introduced into contaminated water bind to the suspended particles and settle to the bottom of the fluid, allowing the contaminants to be removed. These systems, produced in flow-through reactors, have demonstrated successful retention of selenium and arsenic. The EU-funded REPONANO project will reveal more about the potential of magnetite nanoparticles to immobilise various contaminants including chromium, antimony and uranium. The nanoparticle aggregates will be coated with polyethylene glycol. Improved understanding of the physical and chemical properties of such artificial aggregates can serve as a basis for the study of alternative remediation techniques with respect to drinking and waste water contamination.
Objective
Iron (hydr)oxides are widely considered as important factors for the immobilisation of many contaminants, while their nano-scale counterparts offer greater retention capacity. Successful immobilisation of contaminants is documented, for instance, via nanomagnetite, although this solid is far less studied compared to other Fe oxides. Soil aggregates are natural systems ideal for the study of the (bio)geochemical reactions that control the mobility of the redox sensitive elements due to their small size and their spatial heterogeneity. The reduction of contaminants by Fe (hydr)oxides using artificial aggregate systems has been studied via experimental set ups that mimic the field conditions, showing the great retention potential of important toxic pollutants. These systems have been originally developed in a macro-scale via flow-through reactors using constructed aggregates coated with ferryhydrite and indicated the successful retention of Se and As. Thus, the purpose of the present study is to use those systems in a micro-scale edition via the use of microfluidics and PEG aggregates in order to study the nanomagnetite immobilisation potential of various contaminated systems (i.e. Se, As, Cr, Sb, U). We aim to obtain Break Through Curves (BTC) of the contaminants of interest to investigate the spatial distribution of the phases produced by nanomagnetite reduction and to assess all the driving geochemical and physical processes. Micro X-Ray Tomography (SR-CT) and µXAS will be applied for the first time to such experimental systems, offering a 3D description of the various species present in these aggregates. A numerical (3D) reactive transport model will be, also, used to interpretate the time-resolved data obtained in such a natural system and to set up new water treatments based on such macroscopic devices. We aim to provide innovative insights and set the basis for alternative remediation techniques with respect to drinking and waste water contamination worldwide.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences classical mechanics fluid mechanics microfluidics
- engineering and technology environmental engineering water treatment processes wastewater treatment processes
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2019
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
38058 GRENOBLE
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.