Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Machine Learning in Disordered Photonics

Description du projet

En savoir plus sur les matériaux exotiques diffusant la lumière pour mieux les exploiter

À l’instar d’un groupe de boules de flipper qui rebondissent sur tout ce qui se présente, y compris sur les autres boules, les photons qui pénètrent dans des matériaux désordonnés sont plusieurs fois diffusés avant de quitter les matériaux dans des directions aléatoires. La «danse» peut se poursuivre, les rayons aléatoires interférant à nouveau les uns avec les autres. Cet étonnant spectacle lumineux, s’il est exploité, peut être mis à profit pour développer des dispositifs photoniques innovants. Jusqu’à présent, la caractérisation permettant la prédiction rationnelle des propriétés des matériaux désordonnés et leur conception ultérieure constituait un obstacle majeur. Le projet MALDIP, financé par l’UE, entend appliquer des techniques d’apprentissage automatique et des simulations numériques pour aller au fond des choses.

Objectif

The field of disordered photonics has increased its importance immensely over past decades as it finds widespread application in several fields from biomedical imaging, to solar energy harvesting, paint, pigments, food and cosmetic industry. However, the current development of highly scattering materials is often hindered by lack of ways to quantitatively predict and model their structural morphology and photonic properties. This action aims to characterize disordered photonic structures made of organic materials by analyzing their 3D structures using Gaussian Processes (GP) based machine learning techniques in conjunction with numerical optical simulations. The inherent randomness in the 3D arrangement of disordered photonics, makes them both intuitively and theoretically ideal to be modeled with GP. The novelty of this action consist of using state-of-the art GP method not only analyze 3D structures, but also to reconstruct them from lower dimensional data, like 2D images and spectroscopic data. Moreover by using the quantitative GP descriptors, we are able both generate input models for numerical simulations and using the feedback iteratively update those models to optimize them for high scattering. We expect that the complementary expertise in characterization and computational methods of the Host and the Researcher will produce not only invaluable insights, but also practical tools to characterize, quantify and exhaustively model and optimize complex photonic structures.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: https://op.europa.eu/fr/web/eu-vocabularies/euroscivoc.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

Voir tous les projets financés dans le cadre de ce programme de financement

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

(s’ouvre dans une nouvelle fenêtre) H2020-MSCA-IF-2019

Voir tous les projets financés au titre de cet appel

Coordinateur

THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Contribution nette de l'UE

La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.

€ 212 933,76
Adresse
TRINITY LANE THE OLD SCHOOLS
CB2 1TN Cambridge
Royaume-Uni

Voir sur la carte

Région
East of England East Anglia Cambridgeshire CC
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

€ 212 933,76
Mon livret 0 0