Skip to main content
European Commission logo
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Understanding human action from unstructured 3D point clouds using deep learning methods

Description du projet

Des machines collaboratives reconnaissent les actions humaines

Les machines automatisées modernes devraient être dotées d’une capacité de reconnaissance humaine, en particulier dans les interactions humain-robot. La vidéo et les méthodes d’apprentissage en profondeur utilisées aujourd’hui ne sont pas assez précises. Elles peuvent toutefois bénéficier de l’utilisation des nuages 3D. Pour cette raison, le projet 3DInAction financé par l’UE élaborera une nouvelle méthodologie et concevra une classe d’algorithmes basés sur les propriétés statistiques globales et locales des nuages de points 3D. Un réseau neuronal convolutif 3D sera utilisé pour créer une représentation multimodale de l’action humaine pour sa reconnaissance 3D et la capacité d’apprendre du monde réel.

Objectif

Human action recognition and forecasting is an integral part of autonomous robotic systems that require human-robot interaction as well as other engineering problems. Action recognition is typically achieved using video data and deep learning methods. However, other tasks, e.g. classification, showed that it is often beneficial to additionally use 3D data. Namely, 3D point clouds that are sampled on the surfaces of objects and agents in the scene. Unfortunately, existing human action recognition methods are somewhat limited, motivating the following research. In this action, we describe a new class of algorithms for 3D human action recognition and forecasting using a deep learning-based approach. Our approach is novel in that it extends a recent body of work on action recognition from 2D to the 3D domain which is particularly challenging due to the unstructured, unordered and permutation invariant nature of 3D point clouds. Our algorithms use the global and local statistical properties of 3D point clouds along with a 3D convolutional neural network to devise novel multi-modal representation of human action. It is inherently robust to spatial changes in the 3D domain, unlike previous works which rely on the 2D projections. In practice, deep learning methods allow us to learn an inference model from real-world examples. A common methodology for action recognition includes creating an annotated dataset, training an inference model and testing its generalization. Our research objectives cover all of these tasks and suggest novel methods to tackle them. Overall, the proposed research offers a new point of view for these long-standing problems, and with the vast related work in other domains, it may bridge the gap to arrive at a generalizable, effective and efficient 3D human action recognition and forecasting machinery. The resulting algorithms may be used in several scientific and engineering domains such as human-robot interaction among other applications.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Coordinateur

TECHNION RESEARCH AND DEVELOPMENT FOUNDATION LTD
Contribution nette de l'UE
€ 276 205,44
Adresse
THE SENATE BUILDING TECHNION CITY 1
32000 Haifa
Israël

Voir sur la carte

Type d’activité
Private for-profit entities (excluding Higher or Secondary Education Establishments)
Liens
Coût total
€ 276 205,44

Partenaires (1)