Projektbeschreibung
Ein neuartiges funktionales Abbildungsrahmenwerk kommt auf den Punkt
Die Gleichung einer Geraden ist eine mathematische Abbildung, die jedem x-Wert einen y-Wert zuordnet. Zwar gibt es viele wesentlich kompliziertere Abbildungen, im Allgemeinen beschreiben sie jedoch alle eine Beziehung zwischen Punkten und Formen. Im Laufe der letzten Jahrzehnte wurde ein Rahmenwerk für die funktionale Abbildung entwickelt, das Abbildungen zwischen Formenpaaren (reellwertige Funktionen) statt Punkten auf den Formen darstellt, indem die funktionalen Räume linear approximiert werden. So können Abbildungen auf sehr kompakte und dennoch global interpretierbare Weise dargestellt werden. Das EU-finanzierte Projekt NON-LINFMAPS wird dieses Rahmenwerk erweitern, um Nichtlinearität durch innovative Darstellungen und Verfahren der punktweisen Abbildung darin aufzunehmen.
Ziel
The functional maps (FM) is an effective and established method for shape matching in several applications such as computer graphics, medical imaging, computer-aided design and biomedical data analysis among many others.
In the last few years, a large quantity of research has been devoted to this topic, giving rise to new analysis and implementation of innovative methods.
The interest in FM arises from its efficiency, its effectiveness and the several applications in which FM can be involved.
Given two 3D shapes, FM focus on the correspondence between the functional spaces defined on two surfaces rather than between the points of their 3D embeddings.
A small matrix can compactly encode the FM representing the functional spaces on a fixed basis.
A common choice is to approximate the functional spaces as a linear vector space through a truncated subset of their Fourier basis.
In most cases, only the vector space structure of functional spaces is exploited, but not their algebra, i.e. the ability to take pointwise products of functions.
With NON-LINFMAPS, we aim to reinforce the FM injecting the non-linearity in the framework through new representations of the functional spaces and innovative techniques for the conversion of the FM in a point-to-point matching.
The main motivations of this proposal are twofold. First, there is solid evidence that non-linearity encodes essential map properties. Second, the non-linearity of maps between embedded surfaces makes non-linearity more suitable to extract high-quality correspondences from FM.
Through the MSCA, we plan to create an entirely novel computational framework for FM that directly exploits the algebra structure of functional spaces integrating non-linearity. Based on these new insights, we will design efficient algorithms and entirely new applications for different shape representations, such as graphs, point clouds and volumetric data confirming the multi-disciplinary potential of our proposal.
Wissenschaftliches Gebiet (EuroSciVoc)
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- NaturwissenschaftenInformatik und InformationswissenschaftenDatenwissenschaften
- NaturwissenschaftenMathematikreine MathematikAlgebra
- Technik und TechnologieMedizintechnikdiagnostische Bildgebung
Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen
Wir bitten um Entschuldigung ... während der Ausführung ist ein unerwarteter Fehler aufgetreten.
Sie müssen sich authentifizieren. Ihre Sitzung ist möglicherweise abgelaufen.
Vielen Dank für Ihr Feedback. Sie erhalten in Kürze eine E-Mail zur Übermittlungsbestätigung. Wenn Sie sich für eine Benachrichtigung über den Berichtsstatus entschieden haben, werden Sie auch im Falle einer Änderung des Berichtsstatus benachrichtigt.
Schlüsselbegriffe
Programm/Programme
Thema/Themen
Aufforderung zur Vorschlagseinreichung
(öffnet in neuem Fenster) H2020-MSCA-IF-2019
Andere Projekte für diesen Aufruf anzeigenFinanzierungsplan
MSCA-IF -Koordinator
91128 Palaiseau Cedex
Frankreich