Project description DEENESFRITPL Decoding co-co assembly An assembly of components put together at different stages leads to co-co assembly. What is more, co-co assembly is mostly employed for the formation of homo-oligomers and exists in all kingdoms of life. Still, very little is known about the molecular mechanisms that drive it. The EU-funded Co-coAssembly project will study mechanisms of co-co assembly using the dimeric chorismate mutase as a representative top candidate from a high throughput screen for co-co assembling protein complexes in E. coli. Employing special tomography, the study will focus on the three-dimensional arrangement of E. coli ribosomes to assess how the organisation of translational machinery allows co-co assembly. Show the project objective Hide the project objective Objective Almost all fundamental biological processes involve protein complexes and therefore, efficient folding and assembly of homo- and hetero-oligomers is critical for cellular functionality and integrity. Recent studies have shown that many protein complexes assemble co-translationally by one fully-synthesized subunit engaging another subunit that is still in nascent state (co-post assembly). An ongoing study in the Bukau lab now revealed that assembly can also occur by interaction of two partner nascent chains (co-co assembly). Co-co assembly is mostly employed for the formation of homo-oligomers and exists in all kingdoms of life.. Despite initial evidence of its existence, very little is known about the molecular mechanisms driving co-co assembly. This includes information on whether co-co assembly requires co-localization of two polysomes or can happen on one polysome.. Furthermore, it is currently unclear whether co-co interactions require preceding nascent chain folding steps and to what extent co-translationally acting chaperones coordinate the process and the impact of translation speed on co-co assembly.I propose to study mechanisms of co-co assembly using the dimeric chorismate mutase (PheA) as a representative top candidate from a high throughput screen for co-co assembling protein complexes in E. coli. Employing cryo-electron tomography, I will analyse the three dimensional arrangement of E. coli ribosomes in the context of a polysome to assess how organization of translational machinery allows co-co assembly. Moreover, I will study the co-translational cascade of folding steps of chorismate mutase by utilizing FRET on in vitro prepared nascent chains. Finally, I plan to explore the impact of co-translationally acting chaperones and translation kinetics on co-co assembly, by performing disome-selective profiling analysis in chaperone mutant cells lacking Trigger Factor and DnaK and in mutants that synthesize proteins with reduced translation kinetics. Fields of science natural sciencesbiological sciencesbiochemistrybiomoleculesproteinsnatural sciencesphysical sciencesopticsmicroscopyelectron microscopy Programme(s) H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions Main Programme H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility Topic(s) MSCA-IF-2019 - Individual Fellowships Call for proposal H2020-MSCA-IF-2019 See other projects for this call Funding Scheme MSCA-IF-EF-RI - RI – Reintegration panel Coordinator RUPRECHT-KARLS-UNIVERSITAET HEIDELBERG Net EU contribution € 174 806,40 Address Seminarstrasse 2 69117 Heidelberg Germany See on map Region Baden-Württemberg Karlsruhe Heidelberg, Stadtkreis Activity type Higher or Secondary Education Establishments Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00