Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Activation of mitochondria during embryogenesis

Project description

Mechanisms of mitochondrial functions activation after fertilisation

The EU-funded MitoZebra project is going to investigate the mechanisms underlying the increase in mitochondrial energy production during embryogenesis. Researchers will employ zebrafish embryos as a model system for vertebrate development to measure mitochondrial translational activity using de novo translation assays and assess its contribution to the assembly of new respiratory chain complexes. The project will explore the fundamental mechanism of the co-regulation of cytoplasmic and mitochondrial translation and will provide insights into activation mechanisms of mitochondrial functions after fertilisation. The early embryo nucleus is transcriptionally inactive, and the project has the potential to discover novel, transcription-independent feedback mechanisms that balance mitochondrial and cytoplasmic translations.

Objective

Mitochondria are well known as the powerhouse of cells and play a vital role in embryo development regulating energy
homeostasis. Mitochondrial function has been studied for decades, although several aspects of mitochondrial metabolism during
development still remain unclear. Which mechanisms are responsible for the continuous increase in respiratory chain activity during
embryogenesis? How does translational activity in the early embryo contribute to this process, and how is the translational activity in
mitochondria coordinated with the translational activity in the cytoplasm?
In my project, I will investigate mechanisms that underlie the increase in mitochondrial energy production during embryogenesis.
Using zebrafish embryos as a model system for vertebrate development, I propose to measure mitochondrial translational activity
with de novo translation assays and assess its contribution to the assembly of new respiratory chain complexes. Also, I will explore
the largely enigmatic mechanism of the co-regulation of cytoplasmic and mitochondrial translation.
My research will provide novel insights into the universal yet poorly understood mechanisms that activate mitochondrial function
after fertilization. Since in the early embryo nucleus is transcriptionally inactive, my work has the potential to discover novel,
transcription-independent feedback-mechanisms that balance mitochondrial and cytoplasmic translations.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2019

See all projects funded under this call

Coordinator

FORSCHUNGSINSTITUT FUR MOLEKULARE PATHOLOGIE GESELLSCHAFT MBH
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 186 167,04
Address
CAMPUS-VIENNA-BIOCENTER 1
1030 Wien
Austria

See on map

Region
Ostösterreich Wien Wien
Activity type
Private for-profit entities (excluding Higher or Secondary Education Establishments)
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 186 167,04
My booklet 0 0