Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Realistic and Informative Simulations with machine learnING

Description du projet

De meilleures simulations pour observer les étoiles

Notre intérêt pour l’astronomie remonte à l’Antiquité. Stimulée par un certain nombre de développements et d’améliorations ainsi que par l’utilisation d’équipements plus avancés et par des connaissances scientifiques approfondies, l’astronomie est toujours aussi populaire. Aujourd’hui, la recherche astronomique dépend fortement des simulations. Malheureusement, il n’est pas possible de mesurer concrètement le facteur de réalisme en simulation, et les simulations numériques ont tendance à être trop lentes et trop chères pour le prototypage de nouvelles techniques ou l’amélioration de la pertinence statistique. Le projet RISING, financé par l’UE, abordera ces questions en développant un cadre comprenant des outils d’apprentissage automatique pour un certain nombre d’utilisations, qui pourra être appliqué directement sur les simulations dynamiques de groupements d’étoiles et les simulations hydrodynamiques de leurs nuages parents.

Objectif

Contemporary astronomical research relies heavily on simulations. However, the current state of the art has no objective way to measure how `realistic’ a simulation is, nor how informative it is with respect to the scientific questions it was designed to address. Comparison between simulation and observation is left to the subjective judgment of the individual researcher. The set up of simulation sets, the choice of parameters and ingredients to include, and the number of runs to execute are all also left to the researcher’s preferences, given hardware constraints. Numerical astronomy has, as of now, no shared standard of experiment design. Additionally, numerical simulations are often so slow and expensive that it is impossible to quickly and cheaply produce new outputs to improve statistical significance or for rapid prototyping new techniques. To address these issues, I will develop the RISING framework. RISING (Realistic and Informative Simulations with machine learnING) is a bundle of machine learning tools: anomaly detection tools to measure the realism of simulations, active learning tools to plan optimal sets of simulations under resource constraints, and generative modeling tools to obtain credible simulation outputs without running the underlying simulation. RISING will find immediate application on dynamical simulations of star clusters and hydrodynamical simulations of their parent clouds, which are being run in large numbers by the ERC-funded DEMOBLACK group led by my host, Prof. Michela Mapelli. RISING will be written in Python 3.7 using the Keras API on top of Tensorflow, integrated with frameworks for multi-scale, multi-physics simulations, such as AMUSE , whose author is Prof. Portegies-Zwart (Leiden Univ.) with which Prof. Mapelli has a current ongoing collaboration. The source code of RISING and selected data products will be made freely available to the numerical astronomy community.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Mots‑clés

Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

Voir tous les projets financés dans le cadre de ce programme de financement

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

(s’ouvre dans une nouvelle fenêtre) H2020-MSCA-IF-2019

Voir tous les projets financés au titre de cet appel

Coordinateur

UNIVERSITA DEGLI STUDI DI PADOVA
Contribution nette de l'UE

La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.

€ 255 768,00
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

€ 255 768,00

Partenaires (1)

Mon livret 0 0