Skip to main content

vEnturing oN heTERodoped Polycyclic aRomatIc hydrocarbonS to develop smart labEls

Objective

The scientific goal of ENTERPRISE is to develop and apply multifunctional chromogenic heteroatom-doped polycyclic aromatic hydrocarbons to produce materials that can empower current packaging technology and elevate electrochromic displays to the age of interactivity.
These smart labels can thus provide information to people in an unequivocal and yet appealing way. We plan to produce materials that, through a selective reaction with O2, irreversibly retain an oxidising event and successively communicate it as an irreversible colour change under a human input. To achieve it, we envisage to prepare hybrid O-doped chromogenic polycyclic aromatic hydrocarbons that, in the presence of O2 and light, will act as a photosensitiser producing singlet O2. The reactive O2 will interact with the chromogenic material itself to give endoperoxide species that, under an external stimulus, yield radical species initiating an irreversible coloured polymerisation. Integration of this material into a prototype electrochromic display will result in a label that operates irreversibly after it has been exposed to O2 and reversibly when not exposed to O2. Considering that the leading cause of food-spoilage is related to aerobic oxidations, we expect our results to initiate a series of further technological advancements in the field of labels for smart packaging of food, opening the door to the first O2-sensitive, user-friendly, rapid, flexible and printable label. Through this fellowship, the applicant will enhance her creative and innovative research potential and her multidisciplinary competence of organic materials, with the final goal to become a prime researcher at the interface between fundamental and applied research. This will be made possible by the coordinated effort of a focused and highly motivated young supervising team composed of a leading academic institution and a vibrant enterprise.

Call for proposal

H2020-MSCA-IF-2019
See other projects for this call

Funding Scheme

MSCA-IF-EF-ST - Standard EF
Leaflet | Map data © OpenStreetMap contributors, Credit: EC-GISCO, © EuroGeographics for the administrative boundaries

Coordinator

UNIVERSITAT WIEN
Address
Universitatsring 1
1010 Wien
Austria
Activity type
Higher or Secondary Education Establishments
EU contribution
€ 174 167,04