Project description
A novel method for protein sequencing
Post-translational modifications (PTM) endow proteins with extensive functional variation paramount for living organisms. However, detection of these modifications by sequencing or mass spectrometry comes with certain limitations. Both techniques are labour-intensive, require extensive sample preparation and cannot account for low-abundance proteins or provide information at the single-cell level. Scientists of the EU-funded SMPSBN project propose to develop a method similar to nanopore DNA sequencing for determining PTMs in a high-throughput manner and with single-molecule sensitivity. Once materialised, this technology is expected to revolutionise proteomics research and pave the way for its use in the clinic.
Objective
Despite the importance of post-translational variation to the function of proteins in a living organism, sequencing proteins to study these variations is still a costly and time-consuming process, with intrinsic limitations. Protein sequencing and detection of post-translational modifications (PTMs) by mass spectrometry, the current gold standard, requires extensive sample preparation and large sample sizes, and possesses a limited dynamic range with respect to sample concentration. These limitations severely restrict its application to biological and clinical problems. A robust method for sequencing proteins and detecting PTMs at the single-molecule level would be revolutionary for proteomics research, allowing biologists to quantify low-abundance proteins as well as distributions and correlations of PTM patterns, all at a single-cell level. I propose a first-of-kind method for protein sequencing with applications in fundamental biology, cancer immunotherapy, and pharmaceutical development. This method uses biological nanopores in a manner similar to nanopore DNA sequencing, an established single-molecule sequencing technology capable of high throughput and single-molecule sensitivity. Developing this method for protein sequencing comes with many significant challenges, which will be addressed over the course of the proposed research.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences biochemistry biomolecules proteins proteomics
- natural sciences biological sciences genetics DNA
- medical and health sciences clinical medicine oncology
- medical and health sciences basic medicine immunology immunotherapy
- natural sciences chemical sciences analytical chemistry mass spectrometry
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-EF-ST - Standard EF
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2019
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
2628 CN DELFT
Netherlands
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.