Descrizione del progetto
Studiare le strane proprietà del plasma di quark e gluoni
Nell’istante precedente la creazione della materia, il plasma di quark e gluoni riempiva l’intero Universo. Oggi, le sue proprietà e i suoi meccanismi di innesco rapido (ancora inspiegabili) sono oggetto di studio dei fisici teorici nelle ricerche sperimentali che si svolgono presso il Large Hadron Collider e il Relativistic Heavy Ion Collider. La natura quasi perfetta del plasma di quark e gluoni è stata dimostrata. Tuttavia, il meccanismo con cui emerge dalle collisioni adroniche o il comportamento liquido dei piccoli sistemi che emergono dalle collisioni protone-protone non è ancora stato spiegato. Il progetto ExHolo, finanziato dall’UE, si propone di creare un quadro dinamico della termalizzazione della materia fuori equilibrio in campi idrodinamici. Utilizzerà una struttura innovativa e un approccio in tempo reale per studiare le dinamiche della materia calda fuori equilibrio per etichettare le proprietà tipiche del plasma di quark e gluoni delle collisioni tra ioni pesanti.
Obiettivo
Understanding the properties of extreme phases of nuclear matter is one of the major challenges in theoretical physics today. Matter at high temperatures dominated the first microsecond of the early universe and is nowadays produced in relativistic heavy ion collisions in the form of the Quark-Gluon Plasma (QGP). Systematic experimental studies at the Large Hadron Collider (LHC) and the Relativistic Heavy Ion Collider (RHIC) support the picture of the QGP as an almost perfect fluid but the mechanism for its fast emergence from collisions of hadronic matter remains a puzzle to this day. Another surprising observation was the liquid-like behavior of small systems emerging from proton-proton or proton-lead collisions and the absence of jet quenching which is considered to be a crucial probe characterizing the strongly-coupled QGP.
In this proposal I aim at finding a dynamical picture of the thermalisation of out-of-equilibrium matter into hydrodynamic fields by making use of a powerful new framework for studying strongly-coupled dynamical systems: the gauge/gravity duality. It allows to map the strongly-coupled gauge theory dynamics of colliding ions to the collision of gravitational shockwaves which is amenable to numerical general relativity. This offers a unique real-time approach to study the dynamics of hot matter out-of-equilibrium, which I will exploit to tackle two essential problems: i) out-of-equilibrium emergence of collectivity and the fast thermalization of the QGP; ii) system-size dependence of the momentum broadening by jets; This project is inter-disciplinary as it involves applying numerical gravity via holography to the physics of matter at extreme conditions, using the most advanced High-Performance-Computing techniques which I am an expert in. The understanding of the thermalisation scale, of jet quenching and the description of pre-flow, is essential for a determination of the QGP properties of heavy-ion collisions.
Campo scientifico
Parole chiave
Programma(i)
Argomento(i)
Meccanismo di finanziamento
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)Coordinatore
1211 GENEVE 23
Svizzera