Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Video Understanding for Autonomous Driving

Descripción del proyecto

Enseñar a los coches a conducir como los humanos

Los vehículos sin conductor, como los vehículos conectados o los coches autónomos, supondrán toda una revolución en los años venideros. Los fabricantes de coches tradicionales se apresuran para lograr que los vehículos totalmente autónomos se ajusten a la futura demanda. Para facilitar esta transformación es necesario mejorar los algoritmos de visión autónoma. El proyecto financiado con fondos europeos VUAD desarrollará un método de aprendizaje profundo dedicado al seguimiento de varios objetos en datos estructurados gráficamente. El proyecto ampliará además su labor a la detección y el seguimiento de objetos por vídeo basados en pistas temporales, para mejorar las funciones de detección y seguimiento. Además, VUAD propondrá un modelo no supervisado de movimiento del fondo para las partes estáticas de la escena. El objetivo es combinar los algoritmos propuestos en un módulo analizador de vídeo.

Objetivo

Autonomous vision aims to solve computer vision problems related to autonomous driving. Autonomous vision algorithms achieve impressive results on a single image for various tasks such as object detection and semantic segmentation, however, this success has not been fully extended to video sequences yet. In computer vision, it is commonly acknowledged that video understanding falls years behind single image. This is mainly due to two reasons: processing power required for reasoning across multiple frames and the difficulty of obtaining ground truth for every frame in a sequence, especially for pixel-level tasks such as motion estimation. Based on these observations, there are two likely directions to boost the performance of tasks related to video understanding in autonomous vision: unsupervised learning and object-level reasoning as opposed to pixel-level reasoning. Following these directions, we propose to tackle three relevant problems in video understanding. First, we propose a deep learning method for multi-object tracking on graph structured data. Second, we extend it to joint video object detection and tracking by exploiting temporal cues in order to improve both detection and tracking performance. Third, we propose to learn a background motion model for the static parts of the scene in an unsupervised manner. Our long-term goal is also to be able to learn detection and tracking in an unsupervised manner. Once we achieve these stepping stones, we plan to combine the proposed algorithms into a unified video understanding module and test its performance in comparison to static counterparts as well as the state-of-the-art algorithms in video understanding.

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..

Para utilizar esta función, debe iniciar sesión o registrarse

Programa(s)

Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

MSCA-IF-EF-ST - Standard EF

Ver todos los proyectos financiados en el marco de este régimen de financiación

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

(se abrirá en una nueva ventana) H2020-MSCA-IF-2019

Ver todos los proyectos financiados en el marco de esta convocatoria

Coordinador

KOC UNIVERSITY
Aportación neta de la UEn

Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.

€ 145 355,52
Dirección
RUMELI FENERI YOLU SARIYER
34450 Istanbul
Turquía

Ver en el mapa

Región
İstanbul İstanbul İstanbul
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

€ 145 355,52
Mi folleto 0 0