Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

Video Understanding for Autonomous Driving

Descrizione del progetto

Insegnare alle vetture a guidare come gli umani

Dai veicoli connessi alle vetture a guida autonoma, i veicoli senza conducente sono destinati a cambiare le carte in tavola nei prossimi anni. I produttori di automobili tradizionali stanno facendo a gara per sviluppare veicoli interamente autonomi allo scopo di rispondere a questa esigenza (futura). A spianare la strada a questa trasformazione è il progresso degli algoritmi di visione autonoma. Il progetto VUAD, finanziato dall’UE, svilupperà un metodo di apprendimento profondo per il tracciamento multi-oggetto su dati strutturati a grafico. Il progetto si estenderà fino a unire il rilevamento e il tracciamento dell’oggetto in video sfruttando segnali temporali per migliorare sia la prestazione di rilevamento che quella di tracciamento. Inoltre, VUAD proporrà un modello di movimento dello sfondo per le componenti statiche della scena senza necessità di supervisione. L’obiettivo è quello di combinare gli algoritmi proposti in un modulo di comprensione del video unificato.

Obiettivo

Autonomous vision aims to solve computer vision problems related to autonomous driving. Autonomous vision algorithms achieve impressive results on a single image for various tasks such as object detection and semantic segmentation, however, this success has not been fully extended to video sequences yet. In computer vision, it is commonly acknowledged that video understanding falls years behind single image. This is mainly due to two reasons: processing power required for reasoning across multiple frames and the difficulty of obtaining ground truth for every frame in a sequence, especially for pixel-level tasks such as motion estimation. Based on these observations, there are two likely directions to boost the performance of tasks related to video understanding in autonomous vision: unsupervised learning and object-level reasoning as opposed to pixel-level reasoning. Following these directions, we propose to tackle three relevant problems in video understanding. First, we propose a deep learning method for multi-object tracking on graph structured data. Second, we extend it to joint video object detection and tracking by exploiting temporal cues in order to improve both detection and tracking performance. Third, we propose to learn a background motion model for the static parts of the scene in an unsupervised manner. Our long-term goal is also to be able to learn detection and tracking in an unsupervised manner. Once we achieve these stepping stones, we plan to combine the proposed algorithms into a unified video understanding module and test its performance in comparison to static counterparts as well as the state-of-the-art algorithms in video understanding.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Programma(i)

Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

MSCA-IF-EF-ST - Standard EF

Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

(si apre in una nuova finestra) H2020-MSCA-IF-2019

Vedi tutti i progetti finanziati nell’ambito del bando

Coordinatore

KOC UNIVERSITY
Contributo netto dell'UE

Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.

€ 145 355,52
Indirizzo
RUMELI FENERI YOLU SARIYER
34450 Istanbul
Turchia

Mostra sulla mappa

Regione
İstanbul İstanbul İstanbul
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

€ 145 355,52
Il mio fascicolo 0 0