Descrizione del progetto
Sviluppo di un nuovo schema fotonico di conversione analogico-numerica
I moderni sistemi TIC richiedono larghezze di banda dello spettro del segnale di centinaia di GHz e persino di 1 THz. Per l’elaborazione del segnale digitale ultraveloce e flessibile, i segnali analogici a banda larga devono essere convertiti in un flusso di bit di dati tramite conversione analogico-numerica. Tuttavia, le fluttuazioni di elettroni casuali nei semiconduttori limitano le prestazioni della conversione analogico-numerica elettronica. Il progetto CompADC, finanziato dall’UE, intende sviluppare un nuovo schema fotonico di conversione analogico-numerica utilizzando pettini a doppia frequenza ottica su scala chip. Ciò consentirà la digitalizzazione in tempo reale della frequenza radio a banda ultra larga e dei segnali a microonde con una larghezza di banda superiore a 100 Ghz. La nuova tecnologia offrirà prestazioni senza pari e integrazione su scala chip per le moderne applicazioni di elaborazione e comunicazione del segnale a banda ultra larga.
Obiettivo
Modern information and communication technology has been propelling the rapid expansion of signal spectrum bandwidth towards the level of hundreds of GHz and even 1 Terahertz. Such wideband analog signals produced in physical world must be converted to a stream of data bits via analog-to-digital conversion (ADC), for ultra-fast and flexible digital signal processing (DSP). However, the random electron fluctuations in semiconductors set a fundamental limitation on the performance of electronic (ADCs), leading to an inherent trade-off between the sampling accuracy and bandwidth. State-of-the-art electronic ADCs typically have only GHz-level analog bandwidth, which is becoming an increasingly severe limitation on high-speed DSP applications. Although the adoption of mode-locked lasers (MLLs) can overcome some limitations using the ultra-stable pulse train for precise time-domain sampling, the GHz-level repetition rate and the challenging integration of MLLs prevents any usability of photonics-assisted ADC in practical applications. In the CompADC project, I propose to develop a radically-new photonic ADC scheme using chip-scale dual optical frequency combs, enabling real-time digitization of ultra-wideband RF and microwave signals with a bandwidth of > 100 GHz. This envisaged performance is enabled by the emerging dissipative Kerr soliton (DKS) microcombs generated in SiN microresonators, which produces a new type of on-chip mode-locked emission of optical pulses with repetition rates exceeding 100 GH. These phase-locked dual microcombs (signal comb and local oscillator comb) will perform precise frequency-domain decomposition and parallel frequency down-conversion of ultra-wideband microwave signals to the detectable range of lower-speed electronics. This CompADC approach has the clear potential to offer unparalleled performance and chip-scale integration for modern ultra-wideband signal processing and communication applications.
Campo scientifico
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringanalogue electronics
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringsignal processing
- natural sciencesphysical scienceselectromagnetism and electronicssemiconductivity
- natural sciencesphysical sciencesopticslaser physics
Parole chiave
Programma(i)
Argomento(i)
Meccanismo di finanziamento
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)Coordinatore
1015 Lausanne
Svizzera