Project description
Silicon–superconducting qubits could make quantum computing more viable and scalable
Physicists are using a growing array of new tools to engineer physical systems on a subatomic scale, to be used as building blocks for the elusive vision of a quantum computer – a device that can address problems not solvable with classical computers. Superconducting circuits, made from superconducting metals and Josephson tunnel junctions, play a big role in processing quantum information, where they can be used as a platform for qubits. The EU-funded SiTe project plans to combine the flexibility of superconducting circuits with the most promising aspects of silicon spin qubits. More specifically, the research team will investigate weak links formed between the semiconductor and the superconductor. Silicon–superconducting qubits could prove to be a scalable platform for future quantum computers.
Fields of science
- engineering and technologymaterials engineeringcrystals
- social sciencespolitical sciencespolitical transitionsrevolutions
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringcomputer hardwarequantum computers
- natural scienceschemical sciencesinorganic chemistrymetalloids
- natural sciencesphysical scienceselectromagnetism and electronicssuperconductivity
Programme(s)
Funding Scheme
MSCA-IF-EF-SE - Society and Enterprise panel
Coordinator
8803 Rueschlikon
Switzerland
See on map