Descripción del proyecto
Un nuevo sistema de control de neuroprótesis
Los dispositivos neuroprotésicos utilizan electrodos para conectarse con el sistema nervioso e intentar recuperar la función o el movimiento. Los científicos participantes en el proyecto financiado con fondos europeos Neuroprosthesis-UI buscan desarrollar una interfaz de usuario que permita a las personas con discapacidad de las extremidades superiores controlar la neuroprótesis a través de sus capacidades motrices residuales. La interfaz consistirá en distintos sensores para registrar la contracción muscular y, con la ayuda del aprendizaje automático, traducirá las señales emitidas por el usuario en intenciones de movimiento. Este sistema híbrido ayudará a los pacientes con discapacidad de las extremidades superiores, como lesiones medulares, ictus y esclerosis múltiples, a realizar de manera independiente actividades cotidianas.
Objetivo
In this project, I will develop a user interface that will allow persons with upper limb disabilities to control neuroprosthesis using their residual motor skills. This interface will consist of inertial sensors (IMU) and electromyography (EMG) that are capable of capturing movements and muscle contraction that even persons with high tetraplegia still can control. The interface will also be able to learn different inputs, customizing the system for each user. This requires techniques of machine learning, making it flexible and indicated for users with different upper limb disabilities, such as spinal cord injury, stroke and multiple sclerosis. The machine learning techniques will classify the user inputs into desired commands, working as an intention decoder. The interface will be used to control a hybrid upper limb neuroprosthesis based on surface functional electrical stimulation (FES) and a semi passive mechanical orthosis. The system will allow users to perform activities of daily life independently. To my knowledge, such a hybrid system with FES, and controlled by an interface based on IMUs, EMG and machine learning techniques is novel. I will be working with Christine Coste, an expert in neuroprosthesis for disabled persons, and her interdisciplinary team, which consist of engineers and health professionals with vast experience in neurorehabilitation. This fellowship will enable the transfer of knowledge between her team and me through experiments with real patients and mutual training. I can contribute to the team with my expertise in machine learning and control, whereas they have vast access to patients, medical doctors, mechanical designers, electrical stimulators and sensors. This project is going to be an important step in my career as expand my network in Europe, develop my skills as a biomedical engineer and improve my research experience towards becoming a world-leading expert in neurorehabilitation engineering.
Ámbito científico (EuroSciVoc)
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural.
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural.
- ciencias médicas y de la saludmedicina básicaneurologíaesclerosis múltiple
- ingeniería y tecnologíaingeniería eléctrica, ingeniería electrónica, ingeniería de la informacióningeniería electrónicasensores
- ciencias médicas y de la saludmedicina básicaneurologíaaccidente cerebrovascular
- ciencias naturalesinformática y ciencias de la informacióninteligencia artificialaprendizaje automático
Para utilizar esta función, debe iniciar sesión o registrarse
Programa(s)
Régimen de financiación
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)Coordinador
78153 Le Chesnay Cedex
Francia