Skip to main content
European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Neuroprosthesis user interface based on residual motor skills and muscle activity in persons with upper limb disabilities

Descripción del proyecto

Un nuevo sistema de control de neuroprótesis

Los dispositivos neuroprotésicos utilizan electrodos para conectarse con el sistema nervioso e intentar recuperar la función o el movimiento. Los científicos participantes en el proyecto financiado con fondos europeos Neuroprosthesis-UI buscan desarrollar una interfaz de usuario que permita a las personas con discapacidad de las extremidades superiores controlar la neuroprótesis a través de sus capacidades motrices residuales. La interfaz consistirá en distintos sensores para registrar la contracción muscular y, con la ayuda del aprendizaje automático, traducirá las señales emitidas por el usuario en intenciones de movimiento. Este sistema híbrido ayudará a los pacientes con discapacidad de las extremidades superiores, como lesiones medulares, ictus y esclerosis múltiples, a realizar de manera independiente actividades cotidianas.

Objetivo

In this project, I will develop a user interface that will allow persons with upper limb disabilities to control neuroprosthesis using their residual motor skills. This interface will consist of inertial sensors (IMU) and electromyography (EMG) that are capable of capturing movements and muscle contraction that even persons with high tetraplegia still can control. The interface will also be able to learn different inputs, customizing the system for each user. This requires techniques of machine learning, making it flexible and indicated for users with different upper limb disabilities, such as spinal cord injury, stroke and multiple sclerosis. The machine learning techniques will classify the user inputs into desired commands, working as an intention decoder. The interface will be used to control a hybrid upper limb neuroprosthesis based on surface functional electrical stimulation (FES) and a semi passive mechanical orthosis. The system will allow users to perform activities of daily life independently. To my knowledge, such a hybrid system with FES, and controlled by an interface based on IMUs, EMG and machine learning techniques is novel. I will be working with Christine Coste, an expert in neuroprosthesis for disabled persons, and her interdisciplinary team, which consist of engineers and health professionals with vast experience in neurorehabilitation. This fellowship will enable the transfer of knowledge between her team and me through experiments with real patients and mutual training. I can contribute to the team with my expertise in machine learning and control, whereas they have vast access to patients, medical doctors, mechanical designers, electrical stimulators and sensors. This project is going to be an important step in my career as expand my network in Europe, develop my skills as a biomedical engineer and improve my research experience towards becoming a world-leading expert in neurorehabilitation engineering.

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural.

Para utilizar esta función, debe iniciar sesión o registrarse

Coordinador

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET AUTOMATIQUE
Aportación neta de la UEn
€ 196 707,84
Dirección
DOMAINE DE VOLUCEAU ROCQUENCOURT
78153 Le Chesnay Cedex
Francia

Ver en el mapa

Tipo de actividad
Research Organisations
Enlaces
Coste total
€ 196 707,84