Project description
Low-cost carbon fibre production process on the path to commercialisation
Car makers are increasingly being challenged to meet stringent global regulations on fuel efficiency and carbon dioxide emissions. Carbon fibre-reinforced composites are a lighter-weight alternative to metal structures without compromising on strength and safety. A large percentage of carbon fibres are made from polyacrylonitrile. This precursor filament is expensive and has therefore prevented the wide use of carbon fibres in the automotive industry. Capitalising on the success of a previous endeavour to turn wood into high-quality continuous filaments to ultimately produce low-cost carbon fibres, researchers of the EU-funded BIO-CC project are now helping to scale and commercialise the newly developed technology. The technology involves mild pre-treatment that renders the wood matrix soluble and spinnable, and facilitates the conversion of the entire lignocellulosic scaffold into filaments. The process will lower the raw material expenses significantly.
Objective
Our modern societies are built on the mobility of the individual. Travelling to and from work, trips for leisure and shopping, or journeys to holiday destinations are integral part of our lives. The most popular means of transportation today is the private car. In 2016, the global car production has surpassed the 70 million mark for the first time. Irrespective of whether and when the mobility of our society will shift to electric vehicles, solutions are needed to increase the fuel and energy efficiency of transportation to mitigate effects of climate change and account for the continuous depletion of fossil fuels. One key strategy is to reduce the weight of the vehicle by replacing metal components through lightweight carbon fiber reinforced composite (CFRC) elements which offer significant weight reduction while maintaining the strength and safety properties. Carbon fibers are still predominantly produced from polyacrylonitrile (PAN) precursor filaments and remain an expensive commodity, which has impeded is widespread use in the automotive sector.
The ERC StG project” Unlocking the Entire Wood Matrix for the Next Generation of Carbon Fibers (WoCaFi)” allowed to develop the foundation to turn wood in its entirety into high-quality continuous filaments, which can be converted into low-cost bio-based carbon fibers.
With the technology at hand, mild pre-treatment is sufficient to render the wood matrix soluble and spinnable, and converted the entire lignocellulosic scaffold into filaments. This will lower the raw material expenses significantly, which is directly translated to the costs of the precursor filament. Further savings are anticipated in the pyrolysis step. Reducing the energy-input in the carbonization protocol would reduce the costs even further. BIO-CC aims at assessing the technical feasibility and scalability of this process and to evaluate the market potential of this wood-based carbon fibers.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology materials engineering fibers
- engineering and technology environmental engineering ecosystem-based management climatic change mitigation
- engineering and technology mechanical engineering vehicle engineering automotive engineering
- engineering and technology environmental engineering energy and fuels
- agricultural sciences agriculture, forestry, and fisheries forestry
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-POC-LS - ERC Proof of Concept Lump Sum Pilot
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2019-PoC
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
02150 Espoo
Finland
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.