Skip to main content
European Commission logo print header

Weighted Spintronic-Nano-Oscillator-based Neuromorphic Computing System Assisted by laser for Cognitive Computing

Project description

Spinning towards a brain-like computer more powerful than any to date

Throughout history, humankind has devoted significant effort to developing machines and tools that can mimic human functions, either relieving people of some of their hard work or surpassing their ability to do it in time or scale. One of the great frontiers is the development of computers that can mimic the human brain in things such as computational power, learning and energy efficiency. The term 'neuromorphic computing' was coined more than 30 years ago, and neuromorphic devices are an attempt to mimic aspects of the brain's architecture and dynamics to achieve these goals. The EU-funded SpinAge project is developing a novel neuromorphic computing system harnessing cutting-edge technologies that could enable an improvement in performance over current systems by at least 4 orders of magnitude, bringing us closer than we have ever been to mimicking the brain with a computer.

Objective

The brain is a highly complex, high performance and low energy computing system due to its massive parallelism and intertwined network, which outperforms the current computers by orders of magnitudes, especially for cognitive computing applications. A large effort has been made into understanding the computing and mimicking the brain into an artificial implementation, so-called neuromorphic computing that has received much attention thanks to the advances in novel nanoscale technologies. The current implementation of the neuromorphic computing systems (NCS) using Complementary Metal-Oxide-Semiconductor (CMOS) technologies has 5-6 orders of magnitude lower performance (operation/sec/Watt/cm3) compared to the brain. Spintronic devices, using the spin of the electron instead of its charge, have been considered one of the most promising approaches for implementing not only memories but also NCSs leading to a high density, high speed, and energy-efficiency. The main goal of SpinAge is to realize a novel NCS enabling large-scale development of brain-inspired devices outclassing the performance of current computing machines. This will be achieved by the novel structures using spintronics and memristors, on-chip laser technology, nano electronics and finally advanced integration of all these technologies. We expect this unprecedented combination of emerging technologies will lead to at least 4-5 orders of magnitude better performance than the state-of-the-art CMOS-based NCSs.
The approach taken in SpinAge is to implement synaptic neurons using novel nanoscale weighted spin-based nano-oscillators, assisted by a low-energy laser pulse irradiation from an integrated plasmonic laser chip, integrated all with the CMOS interfacing electronics for a proof-of-concept of a 16x16 NCS for cognitive computing applications. Our breakthrough platform technology will demonstrate EU leadership of advanced neuromorphic computing.

Keywords

Call for proposal

H2020-FETOPEN-2018-2020

See other projects for this call

Sub call

H2020-FETOPEN-2018-2019-2020-01

æ

Coordinator

AARHUS UNIVERSITET
Net EU contribution
€ 1 122 648,75
Address
Nordre ringgade 1
8000 Aarhus c
Denmark

See on map

Region
Danmark Midtjylland Østjylland
Activity type
Higher or Secondary Education Establishments
Links
Other funding
€ 0,00

Participants (6)