Project description
New instrumentation for sequencing of HS structures
Heparan sulphate (HS) is a polysaccharide found in animal tissues. HS binds a variety of protein ligands and regulates a range of biological activities, including development, angiogenesis, blood coagulation and tumour metastasis. The EU-funded HS-SEQ project aims to address a lack of methods for the sequencing of HS structures by developing a new instrumentation that can simultaneously record multiple molecular properties such as molecular weight by mass spectrometry, collisional cross sections by ion mobility spectroscopy and vibrational properties by gas-phase infrared ion spectroscopy. Applications of the new technology will enable the identification of HS codes that promote the generation of dopaminergic neurons from human pluripotent stem cells for cell replacement therapy in Parkinson’s disease.
Objective
Heparin and heparan sulphate (HS) are highly sulfated polysaccharides that reside on the cell surface and extracellular matrix of all mammalian cell types. Understanding their functions has tremendous potential to unlock the next generation of heparin-based diagnostics and therapeutics for multiple diseases including inflammatory and neurological diseases, cancer, and wound healing. Despite this promise, it is very difficult to harness this biomedical potential due to a fundamental technology bottleneck - lack of methods for the sequencing of HS structures to define the natural “HS codes” that underpin many biological functions. HS-SEQ will address this hurdle and will place Europe in the leading position in the emerging field of glycomics of heparin and HS. It is our vision that robust sequencing methods for heparin and HS will only be possible when new instrumentation will be developed that can simultaneously record multiple molecular properties such as molecular weight by mass spectrometry (MS), collisional cross sections (CCS) by ion mobility spectroscopy (IMS) and vibrational properties by gas-phase infra-red (IR) ion spectroscopy. To implement such a platform, large collections of well-defined HS saccharide standards are needed to generate reference databases that can match molecular properties to structural features. To obtain the required collection of HS saccharides, HS-SEQ will develop and implement an automated platform for chemoenzymatic synthesis of such compounds. The synthetic HS saccharides will also provide unique opportunities to develop an antibody toolkit to identify epitopes expressed by cells/tissues. Specific transformational applications of the new technology will be pursued: (i) identify HS codes that promote the generation of dopaminergic neurons from human pluripotent stem cells (hPSCs) for cell replacement therapy in Parkinson’s disease; and (ii) achieve unprecedented in-depth analysis of pharmaceutical and next-generation heparins.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences computer and information sciences databases
- natural sciences biological sciences biochemistry biomolecules carbohydrates
- medical and health sciences clinical medicine oncology
- medical and health sciences basic medicine neurology parkinson
- natural sciences physical sciences optics spectroscopy
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.2. - EXCELLENT SCIENCE - Future and Emerging Technologies (FET)
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.2.1. - FET Open
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
RIA - Research and Innovation action
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-FETOPEN-2018-2020
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
3584 CS Utrecht
Netherlands
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.