Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

AI-enabled RNA nanotechnology DElivery SysTem for INformATION transfer into cells.

Project description

Intelligent RNA-based delivery of new information into live cells

The EU-funded DESTINATION project aims to create a first-generation RNA-based delivery platform (RNano) for effective delivery of information (mRNA) into cells in vivo. Addressing this challenging goal requires a novel, biocompatible and scalable system to protect the deliverable mRNA from degradation in blood, escape the immune response, and provide high selectivity in cell targeting. The consortium will use AI/machine learning to generate a library of programmable RNano scaffolds for packaged mRNA and RNA aptamers for laser-specific internalisation of RNanos into cells. DESTINATION success could enable novel functions such as the production of a cell's own medicine by replacing the faulty mRNA or engineering cells to fight genetic disorders and cancer.

Objective

By combining the interdisciplinary fields of AI/machine learning with RNA nanotechnology, biochemistry and advanced imaging methods, DESTINATION aims to create a first-generation RNA-based delivery platform (RNano) for effective delivery of information such as mRNA into cells in vivo. mRNA translate the information encoded in a cells DNA into the proteins that are essential for diverse cell function and can be deficient in disease. Administering mRNA into a cell could enable diverse novel functions such as production of its own medicine by replacing the faulty mRNA or engineering cells to fight diseases from genetic disorders and cancer to infectious diseases. However, the ability to deliver mRNA to specific cells in a targeted organ remains an unmet challenge that limits its clinical and commercial potential. Addressing this challenge requires a novel, biocompatible and scalable system capable of (1) protecting the mRNA from degradation in blood; (2) evading the immune response; (3) and providing high selectivity for targeted cells. DESTINATION will generate an intelligent library of (a) programmable RNano scaffolds for attachment of packaged mRNA and (b) RNA aptamers for laser-specific internalization of RNanos into cells. Promising candidates will be tested in vitro, with lead candidates progressed to novel animal models. Ultra high-resolution imaging will allow for the evaluation of the technology, with an iterative R&D approach aimed at demonstrating 3breakthrough preclinical proof-of-concepts incl. in the attractive field of CAR-T cancer immune-therapies. DESTINATION comprises a multi-disciplinary consortium of top academics and 3 R&D-performing SMEs acting as commercialization agents to increase DESTINATIONs impact by developing a translation strategy and communication plan focused on providing early engagement with investors, regulators, potential manufacturing and industry partners. Together, DESTINATION will strengthen EU's position in the emerging fields of RNA technology.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

RIA - Research and Innovation action

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-FETOPEN-2018-2020

See all projects funded under this call

Coordinator

SIXFOLD BIOSCIENCE LTD
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 886 250,00
Address
THE IMPERIAL COLLEGE WHITE CITY INC INNOVATION HUB
W12 0BZ London
United Kingdom

See on map

SME

The organization defined itself as SME (small and medium-sized enterprise) at the time the Grant Agreement was signed.

Yes
Region
London Inner London — West Kensington & Chelsea and Hammersmith & Fulham
Activity type
Private for-profit entities (excluding Higher or Secondary Education Establishments)
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 886 250,00

Participants (6)

My booklet 0 0