Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS
Contenu archivé le 2024-06-18

Homoclinic bifurcation in mechanical systems: theory and application

Objectif

The theory of dynamical systems aims to understand the nature of the behaviour of solutions of evolution equations, describing processes in a broad spectrum of scientific disciplines. Dynamical systems that arise in the context of applications often admit additional structure with important consequences for the dynamics. For instance, mechanical systems often possess symmetry and Hamiltonian structure. Many mechanical systems are described by Hamiltonian equations, such as the celebrated Henon-Heiles model of galactic motion, the motion of nonlinear three-dimensional vibrations of strings, localized travelling waves in Hamiltonian lattices (Fermi-Pasta-Ulam chain), vortex dynamics (related to hydrodynamics problems) and non-holonomic dynamics. The main goal of the proposed project is to develop mathematical methods of the bifurcation theory for dynamical systems with special structures. In particular, the focus will be on bifurcations involving homoclinic solutions, which lie at the basis of the understanding of complicated recurrent dynamics, better known as chaos. While homoclinic bifurcations have been extensively studied in the context of general systems (without additional structure), the problem of homoclinic bifurcation in Hamiltonian systems has received relatively little attention, despite its obvious relevance for many practical applications. This is mainly due to the fact that homoclinic bifurcations in Hamiltonian systems are often much more challenging than those in general systems. The project objectives include the study of global bifurcations in systems with different types of homoclinic and heteroclinic orbits leading to a creation of novel methods for the study of Hamiltonian systems with symmetry. An important objective of the proposed project is the application of these mathematical methods to study the dynamics of an axisymmetric rigid body in a gravity field, which is a fundamental open problem in the field of theoretical mechanics.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

FP7-PEOPLE-2007-4-2-IIF
Voir d’autres projets de cet appel

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

MC-IIFR - International incoming fellowships (Return phase)

Coordinateur

NIZHEGORODSKIY GOSUDARSTVENNIY UNIVERSITET IM N.I. LOBACHEVSKOGO
Contribution de l’UE
€ 15 000,00
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

Aucune donnée
Mon livret 0 0