Descripción del proyecto
Las matemáticas avanzadas proporcionan información novedosa sobre las relaciones estables
Cuando Joseph Louis Lagrange derivó la ecuación de superficies mínimas en 1762, poco podía sospechar de la relación que tendría su ecuación con la teoría de las transiciones de fase desarrollada dos siglos después. Todos estamos familiarizados con algunas transiciones de fase como, por ejemplo, el hielo que se derrite en el agua. Pero existen docenas de casos y todos ellos son esenciales para la actividad diaria y la innovación humana: metales en una aleación, superconductividad, intervalos de confianza en finanzas, cristales líquidos, combustión, diseño óptimo de aislantes, entre muchos otros. A pesar de la naturaleza omnipresente y la importancia de las transiciones de fase, nuestra capacidad para analizar matemáticamente sus comportamientos estables es limitadísima. El proyecto StableIF, financiado con fondos europeos, combina avances recientes con herramientas clásicas de la teoría de superficies mínimas para perfeccionar el análisis matemático que mejorará la comprensión de las transiciones estables de fase.
Objetivo
One of the main drivers of development for the theory of nonlinear elliptic PDE during the second half of the XX century has been the mathematical analysis of physical models for “inter- faces”. Depending on the specific model, these “interfaces” are called minimal surfaces, phase transitions, free boundaries, etc. These models are very important in applications and, due to their strong geometric content and the interdisciplinary methods required for their study, also from a “pure mathematics” perspective. One of the simplest semilinear PDE exhibiting an interface is the classical Allen-Cahn equation. Originally proposed as a model for metal alloys, it gained mathematical notoriety due to its deep connection with the minimal surface equation and many other important PDE. It is very related to the Cahn-Hiliard equation (phase separation in binary fluids), to the Peierls-Nabarro equation (crystal dislocations), and to the Ginzburg-Landau theory (phase transitions, super-conductivity). In addition, it has similarities with other important models such as Bernoulli’s free boundary problem (flame propagation and shape optimization) or the Eriksen-Leslie system (liquid crystals). In the last four decades, outstanding works led to a very deep understanding of the structure of (absolute) energy minimizers for most of the previous models. Still, up to very few exceptions, almost nothing is known today on the structure of stable solutions —i.e. (roughly speaking) minimizers with respect to sufficiently small perturbations. Since stable solutions are “the ones observable in Nature”, their understanding is a fundamental question. Even though it is a very challenging mathematical problem, all the new analysis tools developed in the last decades plus some recent progress give us now an excellent opportunity to address it. In three words, the very ambitious goal of this ERC project is to “understand stable interfaces”.
Ámbito científico (EuroSciVoc)
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..
- ciencias naturales matemáticas matemáticas puras análisis matemático ecuaciones diferenciales ecuaciones diferenciales parciales
- ciencias naturales ciencias físicas electromagnetismo y electrónica superconductor
- ingeniería y tecnología ingeniería de materiales cristal líquido
Para utilizar esta función, debe iniciar sesión o registrarse
Le pedimos disculpas, pero se ha producido un error inesperado durante la ejecución.
Necesita estar autentificado. Puede que su sesión haya finalizado.
Gracias por su comentario. En breve recibirá un correo electrónico para confirmar el envío. Si ha seleccionado que se le notifique sobre el estado del informe, también se le contactará cuando el estado del informe cambie.
Palabras clave
Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).
Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).
Programa(s)
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
PROGRAMA PRINCIPAL
Ver todos los proyectos financiados en el marco de este programa
Tema(s)
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Régimen de financiación
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
ERC-STG - Starting Grant
Ver todos los proyectos financiados en el marco de este régimen de financiación
Convocatoria de propuestas
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
(se abrirá en una nueva ventana) ERC-2020-STG
Ver todos los proyectos financiados en el marco de esta convocatoriaInstitución de acogida
Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.
8092 Zuerich
Suiza
Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.